Source code for nengo_dl.simulator

"""
The Simulator class is the access point for the main features of NengoDL,
including `running <.Simulator.run_steps>` and `training <.Simulator.train>`
a model.
"""

from __future__ import print_function, division

import collections
import copy
import datetime
from distutils.version import LooseVersion
import logging
import os
import tempfile
import time
import warnings

from nengo import Ensemble, Connection, Probe, Network, Direct, Node
from nengo.version import version as nengo_version
from nengo.builder.connection import BuiltConnection
from nengo.builder.ensemble import BuiltEnsemble
from nengo.ensemble import Neurons
from nengo.exceptions import (
    ReadonlyError, SimulatorClosed, NengoWarning, SimulationError,
    ValidationError)
from nengo.solvers import NoSolver
import numpy as np
import pkg_resources
import tensorflow as tf
from tensorflow.python.client.timeline import Timeline
from tensorflow.python.ops import gradient_checker

from nengo_dl import utils, config, objectives
from nengo_dl.builder import NengoBuilder, NengoModel
from nengo_dl.tensor_graph import TensorGraph

if LooseVersion(nengo_version) > "2.8.0":
    from nengo.transforms import Convolution  # pylint: disable=ungrouped-imports
else:
    # using a version of Nengo before Convolution was added
    class Convolution:
        """Dummy convolution class."""

logger = logging.getLogger(__name__)


[docs]class Simulator: """ Simulate network using the ``nengo_dl`` backend. Parameters ---------- network : `~nengo.Network` or None A network object to be built and then simulated. If None, then a built model must be passed to ``model`` instead dt : float Length of a simulator timestep, in seconds seed : int Seed for all stochastic operators used in this simulator model : `~nengo.builder.Model` Pre-built model object dtype : ``tf.DType`` Deprecated, use ``nengo_dl.configure_settings(dtype=...)`` instead. device : None or ``"/cpu:0"`` or ``"/gpu:[0-n]"`` Device on which to execute computations (if None then uses the default device as determined by TensorFlow) unroll_simulation : int Unroll simulation loop by explicitly building the given number of iterations into the computation graph (improves simulation speed but increases build time) minibatch_size : int The number of simultaneous inputs that will be passed through the network tensorboard : str If not None, save network output in the TensorFlow summary format to the given directory, which can be loaded into TensorBoard progress_bar : bool If True (default), display progress information when building a model """ # unsupported unit tests unsupported = [ ("nengo/tests/test_simulator.py:test_warn_on_opensim_del", "nengo_dl raises a different (more visible) warning (see " "tests/test_nengo_tests.py:test_warn_on_opensim_del"), ("nengo/tests/test_simulator.py:test_signal_init_values", "different method required to manually step simulator (see " "tests/test_nengo_tests.py:test_signal_init_values"), ("nengo/tests/test_simulator.py:test_entry_point", "overridden so we can pass custom test simulators (see " "tests/test_nengo_tests.py:test_entry_point"), ("nengo/tests/test_simulator.py:test_simulator_progress_bars", "nengo_dl uses a different progress bar system (see " "tests/test_utils.py:test_progress_bar"), ("nengo/tests/test_node.py:test_args", "time is passed as np.float32, not a float (see " "tests/test_nengo_tests.py:test_args"), ("nengo/tests/test_node.py:test_unconnected_node", "need to set `unroll_simulation` to ensure node runs the correct " "number of times (see " "tests/test_nengo_tests.py:test_unconnected_node"), ("nengo/tests/test_synapses.py:test_alpha", "need to set looser tolerances due to float32 implementation (see " "tests/test_processes.py:test_alpha"), ("nengo/tests/test_ensemble.py:test_gain_bias", "use allclose instead of array_equal (see " "tests/test_simulator.py:test_gain_bias") ] def __init__(self, network, dt=0.001, seed=None, model=None, dtype=None, device=None, unroll_simulation=1, minibatch_size=None, tensorboard=None, progress_bar=True): self.closed = False self.unroll = unroll_simulation self.minibatch_size = 1 if minibatch_size is None else minibatch_size self.data = SimulationData(self, minibatch_size is not None) self.seed = (np.random.randint(np.iinfo(np.int32).max) if seed is None else seed) # TODO: multi-GPU support gpu_dists = [d for d in pkg_resources.working_set if d.project_name in ("tensorflow-gpu", "tf-nightly-gpu")] if device is None and len(gpu_dists) == 0: warnings.warn( "No GPU support detected. It is recommended that you " "install tensorflow-gpu (`pip install tensorflow-gpu`).") logger.info("Running on CPU") else: logger.info("Running on %s", "CPU/GPU" if device is None else ( "CPU" if "cpu" in device else "GPU")) ProgressBar = (utils.ProgressBar if progress_bar else utils.NullProgressBar) # build model (uses default nengo builder) if model is None: self.model = NengoModel( dt=float(dt), label="%s, dt=%f" % (network, dt), builder=NengoBuilder(), fail_fast=False) else: if dt != model.dt: warnings.warn("Model dt (%g) does not match Simulator " "dt (%g)" % (model.dt, dt), NengoWarning) self.model = model if network is not None: if LooseVersion(nengo_version) < "2.7.1": print("Building network") start = time.time() self.model.build(network, progress_bar=None) print("\rBuild finished in %s " % datetime.timedelta(seconds=int(time.time() - start))) else: p = ProgressBar("Building network", "Build") self.model.build(network, progress=p) if dtype is not None: warnings.warn( "dtype parameter is deprecated; use " "nengo_dl.configure_settings(dtype=...) instead", DeprecationWarning) else: dtype = config.get_setting(self.model, "dtype", tf.float32) # set up tensorflow graph plan with ProgressBar("Optimizing graph", "Optimization", max_value=None) as progress: self.tensor_graph = TensorGraph( self.model, self.dt, unroll_simulation, dtype, self.minibatch_size, device, progress) # construct graph with ProgressBar("Constructing graph", "Construction", max_value=None) as progress: self.tensor_graph.build(progress) # output simulation data for viewing via TensorBoard if tensorboard is not None: if not os.path.exists(tensorboard): os.makedirs(tensorboard) run_number = max( [int(x[4:]) for x in os.listdir(tensorboard) if x.startswith("run")] or [-1]) + 1 self.summary = tf.summary.FileWriter( os.path.join(tensorboard, "run_%d" % run_number), graph=self.tensor_graph.graph) else: self.summary = None # start session session_config = tf.ConfigProto( allow_soft_placement=False, log_device_placement=False, ) # TODO: XLA compiling doesn't seem to provide any benefit at the # moment, revisit later after tensorflow has developed it further # config.graph_options.optimizer_options.global_jit_level = ( # tf.OptimizerOptions.ON_1) # set any config options specified by user config_settings = config.get_setting(self.model, "session_config", {}) for c, v in config_settings.items(): attrs = c.split(".") x = session_config for a in attrs[:-1]: x = getattr(x, a) setattr(x, attrs[-1], v) self.sess = tf.Session(graph=self.tensor_graph.graph, config=session_config) self.reset(seed=seed)
[docs] def reset(self, seed=None): """ Resets the simulator to initial conditions. Parameters ---------- seed : int If not None, overwrite the default simulator seed with this value (note: this becomes the new default simulator seed) """ if self.closed: raise SimulatorClosed("Cannot reset closed Simulator.") self.n_steps = 0 self.time = 0.0 # initialize variables self.sess.run(self.tensor_graph.constant_init_op, feed_dict=self.tensor_graph.signals.constant_phs) self.soft_reset(include_trainable=True, include_probes=True) # execute post-build processes (we do this here because # seed can change each call to reset) if seed is not None: self.seed = seed self.rng = np.random.RandomState(self.seed) tf.set_random_seed(self.seed) self.tensor_graph.build_post(self.sess, self.rng)
[docs] def soft_reset(self, include_trainable=False, include_probes=False): """ Resets the internal state of the simulation, but doesn't rebuild the graph. Parameters ---------- include_trainable : bool If True, also reset any training that has been performed on network parameters (e.g., connection weights) include_probes : bool If True, also clear probe data """ init_ops = [self.tensor_graph.local_init_op, self.tensor_graph.global_init_op] if include_trainable: init_ops.append(self.tensor_graph.trainable_init_op) self.sess.run(init_ops, feed_dict={ ph: v for _, ph, v in self.tensor_graph.base_vars.values()}) if include_probes: for p in self.model.probes: self.model.params[p] = [] self.n_steps = 0
[docs] def step(self, **kwargs): """ Run the simulation for one time step. Parameters ---------- kwargs : dict See `.run_steps` Notes ----- Progress bar is disabled by default when running via this method. """ kwargs.setdefault("progress_bar", False) self.run_steps(1, **kwargs)
[docs] def run(self, time_in_seconds, **kwargs): """ Simulate for the given length of time. Parameters ---------- time_in_seconds : float Run the simulator for the given number of simulated seconds kwargs : dict See `.run_steps` """ if time_in_seconds < 0: raise ValidationError( "Must be positive (got %g)" % (time_in_seconds,), attr="time_in_seconds") steps = int(np.round(float(time_in_seconds) / self.dt)) if steps == 0: warnings.warn("%g results in running for 0 timesteps. Simulator " "still at time %g." % (time_in_seconds, self.time)) else: self.run_steps(steps, **kwargs)
[docs] def run_steps(self, n_steps, data=None, input_feeds=None, profile=False, progress_bar=True, extra_feeds=None): """ Simulate for the given number of steps. Parameters ---------- n_steps : int The number of simulation steps to be executed data : dict of {`~nengo.Node`: `~numpy.ndarray`} Override the values of input Nodes with the given data. Arrays should have shape ``(sim.minibatch_size, n_steps, node.size_out)``. input_feeds : dict of {`~nengo.Node`: `~numpy.ndarray`} Deprecated, use ``data`` instead. profile : bool If True, collect TensorFlow profiling information while the simulation is running (this will slow down the simulation). Can also pass a string specifying a non-default filename for the saved profile data. progress_bar : bool If True, print information about the simulation status to standard output. extra_feeds : dict of {``tf.Tensor``: `~numpy.ndarray`} Can be used to feed a value for arbitrary Tensors in the simulation (will be passed directly to the TensorFlow session) Notes ----- If ``unroll_simulation=x`` is specified, and ``n_steps > x``, this will repeatedly execute ``x`` timesteps until the the number of steps executed is >= ``n_steps``. """ actual_steps = self.unroll * int(np.ceil(n_steps / self.unroll)) if actual_steps != n_steps: warnings.warn( "Number of steps (%d) is not an even multiple of " "`unroll_simulation` (%d). Simulation will run for %d steps, " "which may have unintended side effects." % (n_steps, self.unroll, actual_steps), RuntimeWarning) if input_feeds is not None: # TODO: remove this in 3.0.0 warnings.warn( "The `input_feeds` argument has been renamed; please use " "`data` instead, as `input_feeds` will not be supported in a " "future version.", DeprecationWarning) assert data is None data = input_feeds if data is None: data = actual_steps else: # note: we only need to check the shape of the first item, because # check_data (inside run_batch) will ensure that all the items # have the same shape batch_size, input_steps = next(iter(data.values())).shape[:2] if batch_size != self.minibatch_size: raise ValidationError( "Input data must have batch size == sim.minibatch_size " "(%d != %d)" % (batch_size, self.minibatch_size), "data") if input_steps != actual_steps: raise ValidationError( "Number of timesteps in input data (%d) does not " "match requested number of steps (%d)" % (input_steps, n_steps), "data") def callback(_, extra_vals): assert extra_vals == actual_steps progress = ( utils.ProgressBar("Simulating", "Simulation", max_value=None) if progress_bar else utils.NullProgressBar()) with progress: # note: we request steps_run from extra_fetches so that the # simulation will always run for the given number of steps, even # if there are no output probes probe_data = self.run_batch( data, {p: None for p in self.model.probes}, extra_feeds=extra_feeds, extra_fetches=self.tensor_graph.steps_run, combine=lambda x: x[0], isolate_state=False, callback=callback, profile=profile) # update stored probe data for probe, val in probe_data.items(): # drop any extra steps (due to uneven unroll_simulation) val = val[:, :n_steps] if probe.sample_every is not None: # downsample probe according to `sample_every` period = probe.sample_every / self.dt steps = np.arange(self.n_steps, self.n_steps + n_steps) val = val[:, (steps + 1) % period < 1] self.model.params[probe].append(val) # update n_steps # note: we update n_steps according to the number of steps that the # user asked for, not the number of steps that were actually run # (in the case of uneven unroll_simulation) self.n_steps += n_steps self.time = self.n_steps * self.dt
[docs] def train(self, data, optimizer, n_epochs=1, objective=None, shuffle=True, truncation=None, summaries=None, profile=False, extra_feeds=None, progress_bar=True): """ Optimize the trainable parameters of the network using the given optimization method, minimizing the objective value over the given inputs and targets. Parameters ---------- data : dict of {`~nengo.Node` or `~nengo.Probe`: \ `~numpy.ndarray`} or int Input values for Nodes in the network or target values for Probes; arrays should have shape ``(batch_size, n_steps, node.size_out/probe.size_in)``. If no input data is required, an integer can be given specifying the number of timesteps to run the simulation. optimizer : ``tf.train.Optimizer`` TensorFlow optimizer, e.g. ``tf.train.GradientDescentOptimizer(learning_rate=0.1)`` n_epochs : int Run training for the given number of epochs (complete passes through ``data``) objective : dict of {(tuple of) `~nengo.Probe`: callable or ``None``} The objective to be minimized. The default applies `.objectives.mse` to all probes in ``data``. This can be overridden by passing a dictionary mapping Probes to functions ``f(output, target) -> loss`` that consume the actual output and target output for the given probe(s) and return a ``tf.Tensor`` representing a scalar loss value. The function may also accept a single argument ``f(output) -> loss`` if targets are not required. Some common objective functions can be found in `nengo_dl.objectives`. Passing ``None`` as the probe value (instead of a callable) indicates that the error is being computed outside the simulation, and the value passed for that probe in ``data`` directly specifies the output error gradient. If multiple probes are specified as the key, then the corresponding output/target values will be passed as a list to the objective function. The overall loss value being minimized will be the sum across all the objectives specified. shuffle : bool If True, randomize the data into different minibatches each epoch truncation: int If not None, use truncated backpropagation when training the network, with the given truncation length. summaries : list of `~nengo.Connection` or \ `~nengo.Ensemble` or \ `~nengo.ensemble.Neurons` or \ ``"loss"`` or \ ``tf.Tensor`` If not None, collect data during the training process using TensorFlow's ``tf.summary`` format. The summary objects can be a Connection (in which case data on the corresponding weights will be collected), Ensemble (encoders), Neurons (biases), or ``"loss"`` (the loss value for ``objective``). The user can also create their own summaries and pass in the Tensors representing the summary ops. profile : bool If True, collect TensorFlow profiling information while the simulation is running (this will slow down the simulation). Can also pass a string specifying a non-default filename for the saved profile data. extra_feeds : dict of {``tf.Tensor``: `~numpy.ndarray`} Can be used to feed a value for arbitrary Tensors in the simulation (will be passed directly to the TensorFlow session) progress_bar : bool If True, print information about the simulation status to standard output. Notes ----- Most deep learning methods require the network to be differentiable, which means that trying to train a network with non-differentiable elements will result in an error. Examples of common non-differentiable elements include `~nengo.LIF`, `~nengo.Direct`, or processes/neurons that don't have a custom TensorFlow implementation (see `.process_builders.SimProcessBuilder`/ `.neuron_builders.SimNeuronsBuilder`) """ if isinstance(data, int): batch_size = self.minibatch_size n_steps = data else: batch_size, n_steps = next(iter(data.values())).shape[:2] # error checking synapses = [x.synapse is not None for x in (self.model.toplevel.all_connections + (list(p for p in data if isinstance(p, Probe)) if isinstance(data, dict) else []))] if (n_steps == 1 and self.model.toplevel is not None and any(synapses)): warnings.warn( "Training for one timestep, but the network contains " "synaptic filters (which will introduce at least a " "one-timestep delay); did you mean to set synapse=None?") if isinstance(optimizer, dict): raise ValidationError( "The second argument to `sim.train` should be a " "tf.train.Optimizer, not a dictionary; it is likely that this " "code was written for NengoDL 1.x and needs to be updated for " "NengoDL 2.x; see " "https://www.nengo.ai/nengo-dl/project.html#release-history", "optimizer") # fill in default objective if objective is None: if isinstance(data, int): raise ValidationError( "Must specify an explicit objective if no input data " "given", "objective") objective = { p: objectives.mse for p in data if isinstance(p, Probe)} if not isinstance(objective, dict): raise ValidationError("Must be a dictionary mapping Probes to " "objective functions", "objective") # fill in mse function for p, o in objective.items(): if o == "mse": # TODO: remove in 3.0.0 warnings.warn( "Using the string 'mse' for the objective is deprecated, " "and will no longer be supported in the future; please " "use the function `nengo_dl.objectives.mse` in the future", DeprecationWarning) objective[p] = objectives.mse # build the output function apply_optimizer = self.tensor_graph.build_optimizer_func( optimizer, objective) extra_fetches = dict() # add summaries if summaries is not None: if self.summary is None: warnings.warn("Simulator was created with tensorboard=False; " "ignoring requested summaries") else: for i, v in enumerate(summaries): if isinstance(v, str) and v == "loss": summaries[i] = objective summary_op, init = self.tensor_graph.build_summaries(summaries) if init is not None: # initialize any variables created when building summaries self.sess.run(init) extra_fetches["summaries"] = summary_op progress = ( utils.ProgressBar( "Training", max_value=( n_epochs * (batch_size // self.minibatch_size) * (1 if truncation is None else n_steps // truncation)), vars=["loss"]) if progress_bar else utils.NullProgressBar()) objective_probes = tuple(objective.keys()) def callback(out_vals, extra_vals): # update progress bar, with loss value loss = out_vals[objective_probes][1] # loss will be {} if only direct grads used when calculating # gradient kwargs = {} if loss == {} else dict(loss="%.4f" % loss) progress.step(**kwargs) # export summaries to tensorboard if "summaries" in extra_vals: # note: the first output value is the new value of the # global training_step self.summary.add_summary(extra_vals["summaries"], out_vals[objective_probes][0]) # run training with progress: self.run_batch( data, {objective_probes: apply_optimizer}, n_epochs=n_epochs, combine=lambda x: None, extra_feeds=extra_feeds, extra_fetches=extra_fetches, truncation=truncation, profile=profile, shuffle=shuffle, training=True, callback=callback)
[docs] def loss(self, data, objective=None, combine=np.mean, extra_feeds=None, progress_bar=True, training=False): """ Compute the loss value for the given objective and inputs/targets. Parameters ---------- data : dict of {`~nengo.Node` or `~nengo.Probe`: \ `~numpy.ndarray`} or int Input values for Nodes in the network or target values for Probes; arrays should have shape ``(batch_size, n_steps, node.size_out/probe.size_in)``. If no input data is required, an integer can be given specifying the number of timesteps to run the simulation. objective : dict of {(tuple of) `~nengo.Probe`: callable} The objective to compute the loss. The default applies `.objectives.mse` to all probes in ``data``. This can be overridden by passing a dictionary mapping Probes to functions ``f(output, target) -> loss`` that consume the actual output and target output for the given probe(s) and return a ``tf.Tensor`` representing a scalar loss value. The function may also accept a single argument ``f(output) -> loss`` if targets are not required. Some common objective functions can be found in `nengo_dl.objectives`. If multiple probes are specified as the key, then the corresponding output/target values will be passed as a list to the objective function. The overall value returned will be the sum across all the objectives specified. combine : callable Function used to combine objective values from each minibatch. extra_feeds : dict of {``tf.Tensor``: `~numpy.ndarray`} Can be used to feed a value for arbitrary Tensors in the simulation (will be passed directly to the TensorFlow session) progress_bar : bool If True, print information about the simulation status to standard output. training : bool If True, run the network in training mode (where, e.g., spiking neuron models are swapped for the equivalent differentiable approximation). Returns ------- loss : float Sum of computed error values for each function in ``objective``. """ batch_size = (self.minibatch_size if isinstance(data, int) else next(iter(data.values())).shape[0]) # fill in default objective if objective is None: if isinstance(data, int): raise ValidationError( "Must specify an explicit objective if no input data " "given", "objective") objective = { p: objectives.mse for p in data if isinstance(p, Probe)} if not isinstance(objective, dict): raise ValidationError("Must be a dictionary mapping Probes to " "objective functions", "objective") # fill in mse function for p, o in objective.items(): if o == "mse": # TODO: remove in 3.0.0 warnings.warn( "Using the string 'mse' for the objective is deprecated, " "and will no longer be supported in the future; please " "use the function `nengo_dl.objectives.mse` in the future", DeprecationWarning) objective[p] = objectives.mse progress = ( utils.ProgressBar("Calculating loss", "Calculation", max_value=batch_size // self.minibatch_size) if progress_bar else utils.NullProgressBar()) with progress: loss = self.run_batch(data, objective, extra_feeds=extra_feeds, callback=lambda *_: progress.step(), combine=combine, training=training) # sum across objectives loss = np.sum(list(loss.values())) return loss
[docs] def run_batch(self, data, outputs, extra_feeds=None, extra_fetches=None, n_epochs=1, truncation=None, shuffle=False, profile=False, training=False, callback=None, combine=np.stack, isolate_state=True): """ Run the simulation on a batch of input data, computing the given output functions. Parameters ---------- data : dict of {`~nengo.Node` or `~nengo.Probe`: \ `~numpy.ndarray`} or int Input values for Nodes in the network or target values for Probes; arrays should have shape ``(batch_size, n_steps, node.size_out/probe.size_in)``. If no input data is required, an integer can be given specifying the number of timesteps to run the simulation. outputs : dict of {(tuple of) `~nengo.Probe`: callable or None} Functions to apply to probe outputs. Functions can accept one positional argument (the output from that probe on one minibatch) or two (also passed the corresponding target value from ``data``). If a tuple of Probes are given as the key then the first argument will be a list of probe outputs, and the second argument will be the corresponding list of target values. The function can return a ``tf.Tensor``, or tuple of Tensors, which will be evaluated on each minibatch of data. If ``None`` is given then the return value will be the output value from that probe. extra_feeds : dict of {``tf.Tensor``: `~numpy.ndarray`} Can be used to feed a value for arbitrary Tensors in the simulation (will be passed directly to the TensorFlow session) extra_fetches : (list/tuple/dict of) ``tf.Tensor`` Can be used to fetch arbitrary (structures of) Tensor values from the simulation (will be fetched directly from the TensorFlow session). n_epochs : int Repeat ``data`` for ``n_epochs`` iterations. truncation : int If not None, run the simulation ``truncation`` timesteps at a time. Outputs from each truncation block will be passed sequentially to ``combine``, in the same way as minibatch blocks. Note that the simulation state is preserved between truncation blocks, so the sequence forms one continuous run within each minibatch. shuffle : bool If True, randomize the data into different minibatches each epoch. profile : bool If True, collect TensorFlow profiling information while the simulation is running (this will slow down the simulation). Can also pass a string specifying a non-default filename for the saved profile data. training : bool If True, run the network in training mode, otherwise run it in inference mode (this can affect things like the neuron model used). callback : callable A function that will be called after each minibatch is evaluated. The function is passed two arguments; the first is a dictionary corresponding to ``outputs`` with the output values from each function, and the second is the value of ``extra_feeds``. combine : callable The function that will be used to combine the outputs from each minibatch/truncation block. The values from each output function on each minibatch will be formed into a list and passed to ``combine`` in order to compute the final return values from this function. Note that if the output function returns multiple values, then ``combine`` will be applied separately to each of those outputs across the minibatches. isolate_state : bool If True (default), isolate the simulation state for this run from the rest of the simulation (so the execution of this run is not affected by previous runs and will not affect future runs). If False, then this run begins from the terminal state of the last run, each minibatch will continue in sequence from the state of the previous, and future runs will resume from the terminal state of the last minibatch of this run. Returns ------- output_vals : dict of {(tuple of) `~nengo.Probe`: \ (tuple of) `~numpy.ndarray`} The result of computing ``outputs`` on simulation probe values, given ``data``. This pseudocode may help to understand how the return values are constructed given the various parameters of this function: .. code-block:: python output_vals = {} for probe, func in outputs.items(): probe_vals = [] for i in range(n_epochs): for minibatch in data: network_output = run_network(minibatch) probe_vals.append(func(network_output[probe])) output_vals[probe] = combine(output_values) Note that this is not how the values are computed in practice, as it would be quite inefficient. This pseudocode also omits some of the finer details (e.g. truncation and state isolation). Notes ----- In general, users should call one of the wrappers for this function (e.g., `.run_steps`, `.train`, or `.loss`), according to their use case. However, this function can be called directly to run the simulation in a customized way. """ n_steps = (data if isinstance(data, int) else next(iter(data.values())).shape[1]) # error checking if self.closed: raise SimulatorClosed("Simulator cannot run because it is closed.") if not isinstance(data, int): self._check_data(data) if n_steps % self.unroll != 0: raise ValidationError( "The number of timesteps in batch data must be evenly " "divisible by unroll_simulation", "data") if truncation is not None and truncation % self.unroll != 0: raise ValidationError( "Truncation length must be evenly divisible by " "unroll_simulation", "truncation") if training and self.tensor_graph.inference_only: raise ValidationError( "Network was created with inference_only=True, cannot " "be run in training mode", "inference_only") if extra_fetches is None: extra_fetches = [] # apply functions (if any) to output probes output_ops, init_ops = self.tensor_graph.build_outputs(outputs) # initialize any new variables if init_ops is not None: self.sess.run(init_ops) # save the internal state of the simulator if isolate_state: tmpdir = tempfile.TemporaryDirectory() self.save_params(os.path.join(tmpdir.name, "tmp"), include_local=True, include_global=False) # set up profiling if profile: run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() else: run_options = None run_metadata = None # compute outputs on batch output_vals = collections.defaultdict(list) for _ in range(n_epochs): for offset, mini_data in utils.minibatch_generator( data, self.minibatch_size, truncation=truncation, shuffle=shuffle, rng=self.rng): if offset == 0 and isolate_state: self.soft_reset() # fill in feed_dict values if isinstance(mini_data, int): steps = mini_data mini_data = None else: steps = next(iter(mini_data.values())).shape[1] feed = self._fill_feed( steps, data=mini_data, training=training, start=offset + (0 if isolate_state else self.n_steps)) if extra_feeds is not None: feed.update(extra_feeds) # run the simulation try: out_vals, extra_vals = self.sess.run( (output_ops, extra_fetches), feed_dict=feed, options=run_options, run_metadata=run_metadata) except (tf.errors.InternalError, tf.errors.UnknownError) as e: if e.op is not None and e.op.type == "PyFunc": raise SimulationError( "Function '%s' caused an error (see error log " "above)" % e.op.name) else: raise e # pragma: no cover if callback is not None: callback(out_vals, extra_vals) for k, v in out_vals.items(): output_vals[k].append(v) # restore internal state of simulator if isolate_state: self.load_params(os.path.join(tmpdir.name, "tmp"), include_local=True, include_global=False) tmpdir.cleanup() # combine outputs from each minibatch for probe, vals in output_vals.items(): # if the output function returns multiple items, keep those # arrays separate if isinstance(vals[0], (list, tuple)): output_vals[probe] = tuple(combine(v) for v in zip(*vals)) else: output_vals[probe] = combine(vals) # convert back from defaultdict output_vals = dict(output_vals) # output profile data to file self._profile_output(profile, run_metadata) return output_vals
[docs] def save_params(self, path, include_global=True, include_local=False): """ Save network parameters to the given ``path``. Parameters ---------- path : str Filepath of parameter output file include_global : bool If True (default True), save global/trainable network variables include_local : bool If True (default False), save local (non-trainable) network variables Notes ----- This function is useful for saving/loading entire models; for saving/loading individual objects within a model, see `.get_nengo_params`. """ if self.closed: raise SimulatorClosed("Simulation has been closed, cannot save " "parameters") with self.tensor_graph.graph.as_default(): vars = [] if include_global: vars.extend(tf.global_variables()) if include_local: vars.extend(tf.local_variables()) with tf.device("/cpu:0"): path = tf.train.Saver(vars).save(self.sess, path) logger.info("Model parameters saved to %s", path)
[docs] def load_params(self, path, include_global=True, include_local=False): """ Load network parameters from the given ``path``. Parameters ---------- path : str Filepath of parameter input file include_global : bool If True (default True), load global (trainable) network variables include_local : bool If True (default False), load local (non-trainable) network variables Notes ----- This function is useful for saving/loading entire models; for saving/loading individual objects within a model, see `.get_nengo_params`. """ if self.closed: raise SimulatorClosed("Simulation has been closed, cannot load " "parameters") with self.tensor_graph.graph.as_default(): vars = [] if include_global: vars.extend(tf.global_variables()) if include_local: vars.extend(tf.local_variables()) with tf.device("/cpu:0"): tf.train.Saver(vars).restore(self.sess, path) logger.info("Model parameters loaded from %s", path)
[docs] def freeze_params(self, objs): """ Stores the live parameter values from the simulation back into a Nengo object definition. This can be helpful for reusing a NengoDL model inside a different Simulator. For example: .. code-block:: python with nengo.Network() as net: < build network > with nengo_dl.Simulator(net) as sim: < run some optimization > sim.freeze_params(net) with nengo.Simulator(net) as sim2: # run the network in the default Nengo simulator, with the # trained parameters sim2.run(1.0) Parameters ---------- obj : (list of) ``NengoObject`` The Nengo object(s) into which parameter values will be stored. Note that these objects must be members of the Network used to initialize the Simulator. Notes ----- This modifies the source object in-place, and it may slightly modify the structure of that object. The goal is to have the object produce the same output as it would if run in the NengoDL simulator. It may not be possible to accurately freeze all possible object; if you run into errors in this process, try manually extracting the parameters you need in your model (from ``sim.data``). """ if self.closed: raise SimulatorClosed("Simulation has been closed, cannot freeze " "parameters") if not isinstance(objs, (list, tuple)): objs = [objs] for obj in objs: if obj not in ([self.model.toplevel] + self.model.toplevel.all_objects): raise ValueError("%s is not a member of the Network used to " "initialize the Simulator") if not isinstance(obj, (Network, Ensemble, Connection)): raise TypeError("Objects of type %s do not have parameters " "to store" % type(obj)) if isinstance(obj, Network): todo = obj.all_ensembles + obj.all_connections else: todo = [obj] for o, params in zip(todo, self.get_nengo_params(todo)): for k, v in params.items(): setattr(o, k, v)
[docs] def get_nengo_params(self, nengo_objs, as_dict=False): """ Extract model parameters in a form that can be used to initialize Nengo objects in a different model. For example: .. code-block:: python with nengo.Network() as net: a = nengo.Ensemble(10, 1) b = nengo.Ensemble(10, 1) c = nengo.Connection(a, b) with nengo_dl.Simulator(net) as sim: # < do some optimization > params = sim.get_nengo_params([a, b, c]) with nengo.Network() as new_net: # < build some other network > # now we want to insert two connected ensembles with # the same parameters as our previous network: d = nengo.Ensemble(10, 1, **params[0]) e = nengo.Ensemble(10, 1, **params[1]) f = nengo.Connection(d, e, **params[2]) Parameters ---------- nengo_objs : (list of) `~nengo.Ensemble` or `~nengo.Connection` A single object or list of objects for which we want to get the parameters. as_dict : bool If True, return the values as a dictionary keyed by object label, instead of a list (the default). Note that in this case labels must be unique. Returns ------- params : (list or dict) of dicts kwarg dicts corresponding to ``nengo_objs`` (passing these dicts as kwargs when creating new Nengo objects will result in a new object with the same parameters as the source object). A single kwarg dict if a single object was passed in, or a list (dict if ``as_dict=True``) of kwargs corresponding to multiple input objects. """ if isinstance(nengo_objs, (list, tuple)): scalar = False else: scalar = True nengo_objs = [nengo_objs] # convert neurons to the parent ensemble nengo_objs = [obj.ensemble if isinstance(obj, Neurons) else obj for obj in nengo_objs] # find all the data we need to fetch fetches = [] for obj in nengo_objs: if isinstance(obj, Connection): fetches.append((obj, "weights")) elif isinstance(obj, Ensemble): if isinstance(obj.neuron_type, Direct): # we cannot transfer direct ensemble parameters, because # the nengo builder ignores the encoders specified for # a direct ensemble raise ValueError( "get_nengo_params will not work correctly for " "Direct neuron ensembles. Try manually translating " "your network using `sim.data` instead.") fetches.extend([(obj, "scaled_encoders"), (obj, "bias")]) else: raise ValueError( "Can only get Nengo parameters for Ensembles or " "Connections") # get parameter values from simulation data = self.data.get_params(*fetches) # store parameter values in a form that can be loaded in nengo params = [] idx = 0 for obj in nengo_objs: if isinstance(obj, Connection): weights = data[idx] idx += 1 if isinstance(obj.pre_obj, Ensemble): params.append({ "solver": NoSolver(weights.T, weights=False), "function": lambda x, weights=weights: np.zeros( weights.shape[0]), "transform": 1}) elif isinstance(obj.transform, Convolution): transform = copy.copy(obj.transform) # manually bypass the read-only check (we are sure that # nothing else has a handle to the new transform at this # point, so this won't cause any problems) Convolution.init.data[transform] = weights params.append({"transform": transform}) else: if all(x == 1 for x in weights.shape): weights = np.squeeze(weights) params.append({"transform": weights}) else: # note: we don't want to change the original gain (even though # it is rolled into the encoder values), because connections # direct to `ens.neurons` will still use the gains (and those # gains are not updated during training, only the encoders) gain = self.model.params[obj].gain # the encoders we get from the simulation are the actual # weights we want in the simulation. but during the build # process, gains and radius will be applied to the encoders. # so we need to undo that scaling here, so that the build # process will result in the correct values. encoders = data[idx] * obj.radius / gain[:, None] params.append( {"encoders": encoders, "normalize_encoders": False, "gain": gain, "bias": data[idx + 1], "max_rates": Ensemble.max_rates.default, "intercepts": Ensemble.intercepts.default}) idx += 2 # return params in appropriate format if scalar: return params[0] if as_dict: param_dict = {} for obj, p in zip(nengo_objs, params): if obj.label in param_dict: raise ValueError( "Duplicate label ('%s') detected; cannot return " "parameters with as_dict=True" % obj.label) else: param_dict[obj.label] = p params = param_dict return params
[docs] def check_gradients(self, outputs=None, atol=1e-5, rtol=1e-3): """ Perform gradient checks for the network (used to verify that the analytic gradients are correct). Raises a simulation error if the difference between analytic and numeric gradient is greater than ``atol + rtol * numeric_grad`` (elementwise). Parameters ---------- outputs : ``tf.Tensor`` or list of ``tf.Tensor`` or \ list of `~nengo.Probe` Compute gradients wrt this output (if None, computes wrt each output probe) atol : float Absolute error tolerance rtol : float Relative (to numeric grad) error tolerance Notes ----- Calling this function will reset all values in the network, so it should not be intermixed with calls to `.Simulator.run`. """ if self.tensor_graph.inference_only: raise ValidationError( "Network was created with inference_only=True, cannot " "compute gradients", "inference_only") delta = 1e-3 n_steps = self.unroll * 2 data = {n: np.zeros((self.minibatch_size, n_steps, n.size_out)) for n in self.tensor_graph.invariant_inputs} data.update({p: np.zeros((self.minibatch_size, n_steps, p.size_in)) for p in self.tensor_graph.target_phs}) feed = self._fill_feed(n_steps, data=data, training=True) if outputs is None: # note: the x + 0 is necessary because `gradient_checker` # doesn't work properly if the output variable is a tensorarray outputs = [x + 0 for x in self.tensor_graph.probe_arrays.values()] elif isinstance(outputs, tf.Tensor): outputs = [outputs] else: outputs = [self.tensor_graph.probe_arrays[p] + 0 for p in outputs] # check gradient wrt inp for node, inp in self.tensor_graph.input_ph.items(): inp_shape = inp.get_shape().as_list() inp_shape = [n_steps if x is None else x for x in inp_shape] inp_tens = self.tensor_graph.input_ph[node] feed[inp_tens] = np.ascontiguousarray(feed[inp_tens]) inp_val = np.ravel(feed[inp_tens]) for out in outputs: out_shape = out.get_shape().as_list() out_shape = [n_steps if x is None else x for x in out_shape] # we need to compute the numeric jacobian manually, to # correctly handle variables (tensorflow doesn't expect # state ops in `compute_gradient`, because it doesn't define # gradients for them) numeric = np.zeros((np.prod(inp_shape, dtype=np.int32), np.prod(out_shape, dtype=np.int32))) for i in range(numeric.shape[0]): self.soft_reset() inp_val[i] = delta plus = self.sess.run(out, feed_dict=feed) self.soft_reset() inp_val[i] = -delta minus = self.sess.run(out, feed_dict=feed) numeric[i] = np.ravel((plus - minus) / (2 * delta)) inp_val[i] = 0 self.soft_reset() with tf.variable_scope(tf.get_variable_scope()) as scope: dx, dy = gradient_checker._compute_dx_and_dy( inp, out, out_shape) self.sess.run(tf.variables_initializer( scope.get_collection("gradient_vars"))) with self.sess.as_default(): analytic = gradient_checker._compute_theoretical_jacobian( inp, inp_shape, np.zeros(inp_shape), dy, out_shape, dx, extra_feed_dict=feed) if np.any(np.isnan(analytic)) or np.any(np.isnan(numeric)): raise SimulationError("NaNs detected in gradient") fail = abs(analytic - numeric) >= atol + rtol * abs(numeric) if np.any(fail): raise SimulationError( "Gradient check failed for input %s and output %s\n" "numeric values:\n%s\n" "analytic values:\n%s\n" % (node, out, numeric[fail], analytic[fail])) self.soft_reset() logger.info("Gradient check passed")
[docs] def trange(self, sample_every=None, dt=None): """ Create a vector of times matching probed data. Note that the range does not start at 0 as one might expect, but at the first timestep (i.e., ``dt``). Parameters ---------- sample_every : float (Default: None) The sampling period of the probe to create a range for. If None, a time value for every ``dt`` will be produced. """ # TODO: can remove this if we upgrade minimum nengo version if dt is not None: if sample_every is not None: raise ValidationError( "Cannot specify both `dt` and `sample_every`. " "Use `sample_every` only.", attr="dt", obj=self) warnings.warn("`dt` is deprecated. Use `sample_every` instead.") sample_every = dt period = 1 if sample_every is None else sample_every / self.dt steps = np.arange(1, self.n_steps + 1) return self.dt * steps[steps % period < 1]
[docs] def close(self): """ Close the simulation, freeing resources. Notes ----- The simulation cannot be restarted after it is closed. This is not a technical limitation, just a design decision made for all Nengo simulators. """ if not self.closed: # note: we use getattr in case it crashes before the object is # created if getattr(self, "sess", None) is not None: self.sess.close() self.sess = None if getattr(self, "summary", None) is not None: self.summary.close() self.closed = True
def _fill_feed(self, n_steps, data=None, start=0, training=False): """ Create a feed dictionary containing values for all the placeholder inputs in the network, which will be passed to ``tf.Session.run``. Parameters ---------- n_steps : int The number of execution steps data : dict of {`~nengo.Node` or `~nengo.Probe` : `~numpy.ndarray`} Input values for Nodes and target values for Probes. Arrays should have shape ``(sim.minibatch_size, n_steps, node.size_out/probe.size_in)``. start : int Initial value of simulator timestep training : bool Whether we are running in training or inference mode Returns ------- feed_dict : dict of {``tf.Tensor``: `~numpy.ndarray`} Feed values for placeholder tensors in the network """ # fill in constants feed_dict = { self.tensor_graph.step_var: start, self.tensor_graph.stop_var: start + n_steps, } if not self.tensor_graph.inference_only: feed_dict[self.tensor_graph.signals.training] = training inputs = {} targets = {} if data is not None: for k, v in data.items(): if isinstance(k, Node): inputs[k] = v elif isinstance(k, Probe): targets[k] = v else: # this should be caught in check_data raise NotImplementedError() # fill in input values feed_dict.update(self._generate_inputs(inputs, n_steps)) # fill in target values for p, t in targets.items(): if p not in self.tensor_graph.target_phs: raise ValidationError( "%s is not a valid target; this is probably because " "it is not used in the objective function" % p, "targets") feed_dict[self.tensor_graph.target_phs[p]] = t return feed_dict def _generate_inputs(self, data, n_steps): """ Generate inputs for the network (the output values of each Node with no incoming connections). Parameters ---------- data : dict of {`~nengo.Node`: `~numpy.ndarray`} Override the values of input Nodes with the given data. Arrays should have shape ``(sim.minibatch_size, n_steps, node.size_out)``. n_steps : int Number of simulation timesteps for which to generate input data Returns ------- feed_vals : dict of {`~nengo.Node`: `~numpy.ndarray} Simulation values for all the input Nodes in the network. """ feed_vals = {} for n, output in self.tensor_graph.input_funcs.items(): if n in data: # move minibatch dimension to the end feed_val = np.moveaxis(data[n], 0, -1) elif isinstance(output, np.ndarray): # tile to n_steps/minibatch size feed_val = np.tile(output[None, :, None], (n_steps, 1, self.minibatch_size)) else: # call output function to determine value feed_val = np.zeros( (n_steps, n.size_out, self.minibatch_size), dtype=self.tensor_graph.dtype.as_numpy_dtype) for i in range(n_steps): # note: need to copy the output of func, as func # may mutate its outputs in-place on subsequent calls. # this assignment will broadcast the output along the # minibatch dimension if required. feed_val[i] = np.transpose([ func((i + self.n_steps + 1) * self.dt) for func in output]) # note: we still call the function (above) even if the output # is not being used, because it may have side-effects if n in self.tensor_graph.input_ph: feed_vals[self.tensor_graph.input_ph[n]] = feed_val return feed_vals def _check_data(self, data, n_batch=None, n_steps=None): """ Performs error checking on simulation data. Parameters ---------- data : dict of {`~nengo.Node` or `~nengo.Probe`: `~numpy.ndarray`} Array of data associated with given objects in model (Nodes or Probes) n_batch : int Number of elements in batch (if None, will just verify that all data items have same batch size) n_steps : int Number of simulation steps (if None, will just verify that all data items have same number of steps) """ for d, x in data.items(): if x.ndim != 3: raise ValidationError( "should have rank 3 (batch_size, n_steps, dimensions), " "found rank %d" % x.ndim, "data") if isinstance(d, Node): if d not in self.tensor_graph.invariant_inputs: raise ValidationError( "%s is not an input Node (a nengo.Node with " "size_in==0), or is from a different network." % d, "data") elif isinstance(d, Probe): if d not in self.model.probes: raise ValidationError( "%s is from a different network" % d, "data") else: raise ValidationError( "Data objects must be Nodes or Probes, not %s" % d, "data") args = [n_batch, n_steps] labels = ["batch size", "number of timesteps"] for i in range(2): if args[i] is None: val = next(iter(data.values())).shape[i] for n, x in data.items(): if x.shape[i] != val: raise ValidationError( "Elements have different %s: %s vs %s" % (labels[i], val, x.shape[0]), "data") else: for n, x in data.items(): if x.shape[i] != args[i]: raise ValidationError( "Data for %s has %s=%s, which does not match " "expected size (%s)" % (n, labels[i], x.shape[i], args[i]), "data") for n, x in data.items(): if x.shape[0] < self.minibatch_size: raise ValidationError( "Size of minibatch (%d) for %s data less than Simulation " "`minibatch_size` (%d)" % (x.shape[0], n, self.minibatch_size), "data") d = n.size_out if isinstance(n, Node) else n.size_in if x.shape[2] != d: raise ValidationError( "Dimensionality of data (%s) does not match " "dimensionality of %s (%s)" % (x.shape[2], n, d), "data") def _profile_output(self, profile, run_metadata): """ Outputs profile information to file. Parameters ---------- profile : bool or str If True or a string (filename), output profile information to file run_metadata : ``tf.RunMetadata`` TensorFlow RunMetadata proto populated with profiling data """ if not profile: return trace = Timeline(step_stats=run_metadata.step_stats) if isinstance(profile, str): filename = profile else: filename = "nengo_dl_profile.json" with open(filename, "w") as f: f.write(trace.generate_chrome_trace_format()) @property def dt(self): """The time (in seconds) represented by one simulation timestep.""" return self.model.dt @dt.setter def dt(self, _): raise ReadonlyError(attr='dt', obj=self) @property def training_step(self): """The number of training iterations that have been executed.""" return self.tensor_graph.training_step def __enter__(self): self._graph_context = self.tensor_graph.graph.as_default() self._device_context = self.tensor_graph.graph.device( self.tensor_graph.device) self._graph_context.__enter__() self._device_context.__enter__() self.sess.__enter__() return self def __exit__(self, *args): self.sess.__exit__(*args) self._device_context.__exit__(*args) self._graph_context.__exit__(*args) self.close() def __del__(self): """ Raise a RuntimeWarning if the Simulator is deallocated while open. """ if self.closed is not None and not self.closed: warnings.warn( "Simulator with model=%s was deallocated while open. " "Simulators should be closed manually to ensure resources " "are properly freed." % self.model, RuntimeWarning) self.close()
[docs]class SimulationData(collections.Mapping): """ Data structure used to access simulation data from the model. The main use case for this is to access Probe data; for example, ``probe_data = sim.data[my_probe]``. However, it is also used to access the parameters of objects in the model; for example, after the model has been optimized via `.Simulator.train`, the updated encoder values for an ensemble can be accessed via ``trained_encoders = sim.data[my_ens].encoders``. Parameters ---------- sim : `.Simulator` The simulator from which data will be drawn minibatched : bool If False, discard the minibatch dimension on probe data Notes ----- SimulationData shouldn't be created/accessed directly by the user, but rather via ``sim.data`` (which is an instance of SimulationData). """ def __init__(self, sim, minibatched): self.sim = sim self.minibatched = minibatched
[docs] def __getitem__(self, obj): """Return the data associated with ``obj``. Parameters ---------- obj : `~nengo.Probe` or `~nengo.Ensemble` or `~nengo.Connection` Object whose simulation data is being accessed Returns ------- data : `~numpy.ndarray` or \ `~nengo.builder.ensemble.BuiltEnsemble` or \ `~nengo.builder.connection.BuiltConnection` Array containing probed data if ``obj`` is a `~nengo.Probe`, otherwise the corresponding parameter object """ if obj not in self.sim.model.params: raise ValidationError("Object is not in parameters of model %s" % self.sim.model, str(obj)) data = self.sim.model.params[obj] if isinstance(obj, Probe): if len(data) == 0: return [] data = np.concatenate(data, axis=1) if not self.minibatched: data = data[0] data.setflags(write=False) elif isinstance(obj, Ensemble): if isinstance(obj.neuron_type, Direct): # direct mode ensemble gain = bias = None scaled_encoders = encoders = self.get_params( (obj, "scaled_encoders"))[0] else: # get the live simulation values scaled_encoders, bias = self.get_params( (obj, "scaled_encoders"), (obj, "bias")) # infer the related values (rolled into scaled_encoders) gain = (obj.radius * np.linalg.norm(scaled_encoders, axis=-1) / np.linalg.norm(data.encoders, axis=-1)) encoders = obj.radius * scaled_encoders / gain[:, None] # figure out max_rates/intercepts from neuron model max_rates, intercepts = ( obj.neuron_type.max_rates_intercepts(gain, bias)) data = BuiltEnsemble(data.eval_points, encoders, intercepts, max_rates, scaled_encoders, gain, bias) elif isinstance(obj, Connection): # get the live simulation values weights = self.get_params((obj, "weights"))[0] # impossible to recover transform transform = None data = BuiltConnection(data.eval_points, data.solver_info, weights, transform) return data
[docs] def get_params(self, *obj_attrs): """ Returns the current parameter values for the given objects. Parameters ---------- obj_attrs : list of (``NengoObject``, str) The Nengo object and attribute of that object for which we want to know the parameter values (each object-attribute pair specified as a tuple argument to the function). Returns ------- params : list of `~numpy.ndarray` Current values of the requested parameters Notes ----- Parameter values should be accessed through ``sim.data`` (which will call this function if necessary), rather than directly through this function. """ if self.sim.closed: warnings.warn("Checking parameters after simulator is closed; " "cannot fetch live values, so the initial values " "will be returned.") return [getattr(self.sim.model.params[obj], attr) for obj, attr in obj_attrs] params = [] sigs = [] fetches = {} for obj, attr in obj_attrs: sig_obj, sig_attr = self._attr_map(obj, attr) sig = self.sim.model.sig[sig_obj][sig_attr] sigs.append(sig) if sig not in self.sim.tensor_graph.signals: # if sig isn't in sig_map then that means it isn't used # anywhere in the simulation (and therefore never changes), so # we can safely return the static build value params.append(getattr(self.sim.model.params[obj], attr)) else: # this is a live parameter value we need to fetch from the # simulation. we queue them up and fetch them all at once to # be more efficient placeholder = object() fetches[placeholder] = self.sim.tensor_graph.get_tensor(sig) params.append(placeholder) # get the live parameter values fetched = self.sim.sess.run(fetches) # final updating of parameters for i, sig in enumerate(sigs): # fill in placeholder values if type(params[i]) == object: params[i] = fetched[params[i]] # handle minibatch dimension if sig.minibatched: if not self.minibatched: params[i] = params[i][..., 0] else: params[i] = np.moveaxis(params[i], -1, 0) return params
def _attr_map(self, obj, attr): """ Maps from ``sim.data[obj].attr`` to the equivalent ``model.sig[obj][attr]``. Parameters ---------- obj : ``NengoObject`` The nengo object for which we want to know the parameters attr : str The parameter of ``obj`` to be returned Returns ------- obj : ``NengoObject`` The nengo object to key into ``model.sig`` attr : str The name of the signal corresponding to input attr """ if isinstance(obj, Ensemble) and attr == "bias": return obj.neurons, attr elif isinstance(obj, Ensemble) and attr == "scaled_encoders": return obj, "encoders" return obj, attr def __len__(self): return len(self.sim.model.params) def __iter__(self): return iter(self.sim.model.params)