These distributions can be used in any place that Nengo distributions can be used.
nengo_extras.dists.Concatenate(distributions) |
Concatenate distributions to form an independent multivariate |
nengo_extras.dists.MultivariateCopula(…[, rho]) |
Generalized multivariate distribution. |
nengo_extras.dists.MultivariateGaussian(…) |
|
nengo_extras.dists.Mixture(distributions[, p]) |
|
nengo_extras.dists.Tile(values) |
Choose values in order from an array |
nengo_extras.dists.gaussian_icdf(mean, std) |
|
nengo_extras.dists.loggaussian_icdf(…[, base]) |
|
nengo_extras.dists.uniform_icdf(low, high) |
nengo_extras.dists.Concatenate(distributions)[source]¶Concatenate distributions to form an independent multivariate
nengo_extras.dists.MultivariateCopula(marginal_icdfs, rho=None)[source]¶Generalized multivariate distribution.
Uses the copula method to sample from a general multivariate distribution, given marginal distributions and copula covariances [R1111].
| Parameters: | marginal_icdfs : iterable
rho : array_like (optional)
|
|---|
See also
References
| [R1111] | (1, 2, 3) Copula (probability theory). Wikipedia. https://en.wikipedia.org/wiki/Copula_(probability_theory%29 |
nengo_extras.dists.Tile(values)[source]¶Choose values in order from an array
This distribution is not random, but rather tiles an array to be a particular size. This is useful for example if you want to pass an array for a neuron parameter, but are not sure how many neurons there will be.
| Parameters: | values : array_like
|
|---|