

 	
 What is Nengo?

	
 Examples

	
 Documentation

 Nengo core
 NengoGUI
 NengoDL

 NengoSPA
 NengoExtras
 Nengolib
 KerasSpiking
 PyTorchSpiking

 NengoFPGA
 NengoLoihi
 NengoOCL
 NengoSpiNNaker
 NengoMPI

 All documentation

	
 Community

 Forum

 People
 Summer school
 Contributing
 Publications
 Videos
 Code of conduct
 CAA

 	
 Getting
 started

 	Getting started
	User guide	Nengo frontend API	Nengo Objects
	Distributions
	Learning rule types
	Neuron types
	Processes
	Solvers
	Synapse models
	Transforms

	Nengo backend API
	Setting parameters with Configs
	Reusable networks
	Semantic Pointer Architecture
	Advanced topics

	Examples
	Contributing to Nengo
	Project information

 Version:
 latest

 v4.0.0

 v3.2.0

 v3.1.0

 v3.0.0

 v2.8.0

 Note

 This documentation is for a development version.

 Click here for the latest stable release (v4.0.0).

Nengo frontend API¶

Nengo Objects¶

	nengo.Network
	A network contains ensembles, nodes, connections, and other networks.

	nengo.Ensemble
	A group of neurons that collectively represent a vector.

	nengo.ensemble.Neurons
	An interface for making connections directly to an ensemble’s neurons.

	nengo.Node
	Provide non-neural inputs to Nengo objects and process outputs.

	nengo.Connection
	Connects two objects together.

	nengo.connection.LearningRule
	An interface for making connections to a learning rule.

	nengo.Probe
	A probe is an object that collects data from the simulation.

	
class nengo.Network(label=None, seed=None, add_to_container=None)[source]¶
	A network contains ensembles, nodes, connections, and other networks.

A network is primarily used for grouping together related
objects and connections for visualization purposes.
However, you can also use networks as a nice way to reuse
network creation code.

To group together related objects that you do not need to reuse,
you can create a new Network and add objects in a with block.
For example:

network = nengo.Network()
with network:
 with nengo.Network(label="Vision"):
 v1 = nengo.Ensemble(n_neurons=100, dimensions=2)
 with nengo.Network(label="Motor"):
 sma = nengo.Ensemble(n_neurons=100, dimensions=2)
 nengo.Connection(v1, sma)

To reuse a group of related objects, you can create a new subclass
of Network, and add objects in the __init__ method.
For example:

class OcularDominance(nengo.Network):
 def __init__(self):
 self.column = nengo.Ensemble(n_neurons=100, dimensions=2)

network = nengo.Network()
with network:
 left_eye = OcularDominance()
 right_eye = OcularDominance()
 nengo.Connection(left_eye.column, right_eye.column)

	Parameters
		labelstr, optional
	Name of the network.

	seedint, optional
	Random number seed that will be fed to the random number generator.
Setting the seed makes the network’s build process deterministic.

	add_to_containerbool, optional
	Determines if this network will be added to the current container.
If None, this network will be added to the network at the top of the
Network.context stack unless the stack is empty.

	Attributes
		connectionslist
	Connection instances in this network.

	ensembleslist
	Ensemble instances in this network.

	labelstr
	Name of this network.

	networkslist
	Network instances in this network.

	nodeslist
	Node instances in this network.

	probeslist
	Probe instances in this network.

	seedint
	Random seed used by this network.

	
static add(obj)[source]¶
	Add the passed object to Network.context.

	
static default_config()[source]¶
	Constructs a Config object for setting defaults.

	
property all_objects¶
	(list) All objects in this network and its subnetworks.

	
property all_ensembles¶
	(list) All ensembles in this network and its subnetworks.

	
property all_nodes¶
	(list) All nodes in this network and its subnetworks.

	
property all_networks¶
	(list) All networks in this network and its subnetworks.

	
property all_connections¶
	(list) All connections in this network and its subnetworks.

	
property all_probes¶
	(list) All probes in this network and its subnetworks.

	
property config¶
	(Config) Configuration for this network.

	
property n_neurons¶
	(int) Number of neurons in this network, including subnetworks.

	
class nengo.Ensemble(*args, **kwargs)[source]¶
	A group of neurons that collectively represent a vector.

	Parameters
		n_neuronsint
	The number of neurons.

	dimensionsint
	The number of representational dimensions.

	radiusint, optional
	The representational radius of the ensemble.

	encodersDistribution or (n_neurons, dimensions) array_like, optional
	The encoders used to transform from representational space
to neuron space. Each row is a neuron’s encoder; each column is a
representational dimension.

	interceptsDistribution or (n_neurons,) array_like, optional
	The point along each neuron’s encoder where its activity is zero. If
e is the neuron’s encoder, then the activity will be zero when
dot(x, e) <= c, where c is the given intercept.

	max_ratesDistribution or (n_neurons,) array_like, optional
	The activity of each neuron when the input signal x is magnitude 1
and aligned with that neuron’s encoder e;
i.e., when dot(x, e) = 1.

	eval_pointsDistribution or (n_eval_points, dims) array_like, optional
	The evaluation points used for decoder solving, spanning the interval
(-radius, radius) in each dimension, or a distribution from which
to choose evaluation points.

	n_eval_pointsint, optional
	The number of evaluation points to be drawn from the eval_points
distribution. If None, then a heuristic is used to determine
the number of evaluation points.

	neuron_typeNeuronType, optional
	The model that simulates all neurons in the ensemble
(see NeuronType).

	gainDistribution or (n_neurons,) array_like
	The gains associated with each neuron in the ensemble. If None, then
the gain will be solved for using max_rates and intercepts.

	biasDistribution or (n_neurons,) array_like
	The biases associated with each neuron in the ensemble. If None, then
the gain will be solved for using max_rates and intercepts.

	noiseProcess, optional
	Random noise injected directly into each neuron in the ensemble
as current. A sample is drawn for each individual neuron on
every simulation step.

	normalize_encodersbool, optional
	Indicates whether the encoders should be normalized.

	labelstr, optional
	A name for the ensemble. Used for debugging and visualization.

	seedint, optional
	The seed used for random number generation.

	Attributes
		biasDistribution or (n_neurons,) array_like or None
	The biases associated with each neuron in the ensemble.

	dimensionsint
	The number of representational dimensions.

	encodersDistribution or (n_neurons, dimensions) array_like
	The encoders, used to transform from representational space
to neuron space. Each row is a neuron’s encoder, each column is a
representational dimension.

	eval_pointsDistribution or (n_eval_points, dims) array_like
	The evaluation points used for decoder solving, spanning the interval
(-radius, radius) in each dimension, or a distribution from which
to choose evaluation points.

	gainDistribution or (n_neurons,) array_like or None
	The gains associated with each neuron in the ensemble.

	interceptsDistribution or (n_neurons) array_like or None
	The point along each neuron’s encoder where its activity is zero. If
e is the neuron’s encoder, then the activity will be zero when
dot(x, e) <= c, where c is the given intercept.

	labelstr or None
	A name for the ensemble. Used for debugging and visualization.

	max_ratesDistribution or (n_neurons,) array_like or None
	The activity of each neuron when dot(x, e) = 1,
where e is the neuron’s encoder.

	n_eval_pointsint or None
	The number of evaluation points to be drawn from the eval_points
distribution. If None, then a heuristic is used to determine
the number of evaluation points.

	n_neuronsint or None
	The number of neurons.

	neuron_typeNeuronType
	The model that simulates all neurons in the ensemble
(see nengo.neurons).

	noiseProcess or None
	Random noise injected directly into each neuron in the ensemble
as current. A sample is drawn for each individual neuron on
every simulation step.

	radiusint
	The representational radius of the ensemble.

	seedint or None
	The seed used for random number generation.

	
property neurons¶
	A direct interface to the neurons in the ensemble.

	
property size_in¶
	The dimensionality of the ensemble.

	
property size_out¶
	The dimensionality of the ensemble.

	
class nengo.ensemble.Neurons(ensemble)[source]¶
	An interface for making connections directly to an ensemble’s neurons.

This should only ever be accessed through the neurons attribute of an
ensemble, as a way to signal to Connection that the connection
should be made directly to the neurons rather than to the ensemble’s
decoded value, e.g.:

with nengo.Network():
 a = nengo.Ensemble(10, 1)
 b = nengo.Ensemble(10, 1)
 nengo.Connection(a.neurons, b.neurons)

	
property ensemble¶
	(Ensemble) The ensemble these neurons are part of.

	
property probeable¶
	(tuple) Signals that can be probed in the neuron population.

	
property size_in¶
	(int) The number of neurons in the population.

	
property size_out¶
	(int) The number of neurons in the population.

	
class nengo.Node(*args, **kwargs)[source]¶
	Provide non-neural inputs to Nengo objects and process outputs.

Nodes can accept input, and perform arbitrary computations
for the purpose of controlling a Nengo simulation.
Nodes are typically not part of a brain model per se,
but serve to summarize the assumptions being made
about sensory data or other environment variables
that cannot be generated by a brain model alone.

Nodes can also be used to test models by providing specific input signals
to parts of the model, and can simplify the input/output interface of a
Network when used as a relay to/from its internal
ensembles (see EnsembleArray for an example).

	Parameters
		outputcallable, array_like, or None
	Function that transforms the Node inputs into outputs,
a constant output value, or None to transmit signals unchanged.

	size_inint, optional
	The number of dimensions of the input data parameter.

	size_outint, optional
	The size of the output signal. If None, it will be determined
based on the values of output and size_in.

	labelstr, optional
	A name for the node. Used for debugging and visualization.

	seedint, optional
	The seed used for random number generation.
Note: no aspects of the node are random, so currently setting
this seed has no effect.

	Attributes
		labelstr
	The name of the node.

	outputcallable, array_like, or None
	The given output.

	size_inint
	The number of dimensions for incoming connection.

	size_outint
	The number of output dimensions.

	
class nengo.Connection(*args, **kwargs)[source]¶
	Connects two objects together.

The connection between the two object is unidirectional,
transmitting information from the first argument, pre,
to the second argument, post.

Almost any Nengo object can act as the pre or post side of a connection.
Additionally, you can use Python slice syntax to access only some of the
dimensions of the pre or post object.

For example, if node has size_out=2 and ensemble has
size_in=1:

with nengo.Network() as net:
 node = nengo.Node(np.zeros(2))
 ensemble = nengo.Ensemble(10, 1)

We could not create the following connection:

with net:
 nengo.Connection(node, ensemble)

But, we could create either of these two connections:

with net:
 nengo.Connection(node[0], ensemble)
 nengo.Connection(node[1], ensemble)

	Parameters
		preEnsemble or Neurons or Node
	The source Nengo object for the connection.

	postEnsemble or Neurons or Node or LearningRule
	The destination object for the connection.

	synapseSynapse or None, optional
	Synapse model to use for filtering (see Synapse).
If None, no synapse will be used and information will be transmitted
without any delay (if supported by the backend—some backends may
introduce a single time step delay).

Note that at least one connection must have a synapse that is not
None if components are connected in a cycle. Furthermore, a synaptic
filter with a zero time constant is different from a None synapse
as a synaptic filter will always add a delay of at least one time step.

	functioncallable or (n_eval_points, size_mid) array_like, optional
	Function to compute across the connection. Note that pre must be
an ensemble to apply a function across the connection.
If an array is passed, the function is implicitly defined by the
points in the array and the provided eval_points, which have a
one-to-one correspondence.

	transform(size_out, size_mid) array_like, optional
	Linear transform mapping the pre output to the post input.
This transform is in terms of the sliced size; if either pre
or post is a slice, the transform must be shaped according to
the sliced dimensionality. Additionally, the function is applied
before the transform, so if a function is computed across the
connection, the transform must be of shape (size_out, size_mid).

	solverSolver, optional
	Solver instance to compute decoders or weights
(see Solver). If solver.weights is True, a full
connection weight matrix is computed instead of decoders.

	learning_rule_typeLearningRuleType or iterable of LearningRuleType, optional
	Modifies the decoders or connection weights during simulation.

	eval_points(n_eval_points, size_in) array_like or int, optional
	Points at which to evaluate function when computing decoders,
spanning the interval (-pre.radius, pre.radius) in each dimension.
If None, will use the eval_points associated with pre.

	scale_eval_pointsbool, optional
	Indicates whether the evaluation points should be scaled
by the radius of the pre Ensemble.

	labelstr, optional
	A descriptive label for the connection.

	seedint, optional
	The seed used for random number generation.

	Attributes
		functioncallable
	The given function.

	function_sizeint
	The output dimensionality of the given function. If no function is
specified, function_size will be 0.

	labelstr
	A human-readable connection label for debugging and visualization.
If not overridden, incorporates the labels of the pre and post objects.

	learning_rule
	Connectable learning rule object(s) associated with this connection.

	learning_rule_typeinstance or list or dict of LearningRuleType, optional
	The learning rule types.

	postEnsemble or Neurons or Node or Probe or ObjView
	The given post object.

	post_objEnsemble or Neurons or Node or Probe
	The underlying post object, even if post is an ObjView.

	post_sliceslice or list or None
	The slice associated with post if it is an ObjView, or None.

	preEnsemble or Neurons or Node or ObjView
	The given pre object.

	pre_objEnsemble or Neurons or Node
	The underlying pre object, even if post is an ObjView.

	pre_sliceslice or list or None
	The slice associated with pre if it is an ObjView, or None.

	seedint
	The seed used for random number generation.

	size_in
	(int) The number of output dimensions of the pre object.

	size_mid
	(int) The number of output dimensions of the function, if specified.

	size_out
	(int) The number of input dimensions of the post object.

	solverSolver
	The Solver instance that will be used to compute decoders or weights
(see nengo.solvers).

	synapseSynapse
	The Synapse model used for filtering across the connection
(see nengo.synapses).

	transform(size_out, size_mid) array_like
	Linear transform mapping the pre function output to the post input.

	
property learning_rule¶
	Connectable learning rule object(s) associated with this connection.

Type: LearningRule or iterable of LearningRule

	
property size_in¶
	(int) The number of output dimensions of the pre object.

Also the input size of the function, if one is specified.

	
property size_mid¶
	(int) The number of output dimensions of the function, if specified.

If the function is not specified, then size_in == size_mid.

	
property size_out¶
	(int) The number of input dimensions of the post object.

Also the number of output dimensions of the transform.

	
class nengo.connection.LearningRule(connection, learning_rule_type)[source]¶
	An interface for making connections to a learning rule.

Connections to a learning rule are to allow elements of the network to
affect the learning rule. For example, learning rules that use error
information can obtain that information through a connection.

Learning rule objects should only ever be accessed through the
learning_rule attribute of a connection.

	
property connection¶
	(Connection) The connection modified by the learning rule.

	
property modifies¶
	(str) The variable modified by the learning rule.

	
property probeable¶
	(tuple) Signals that can be probed in the learning rule.

	
property size_out¶
	(int) Cannot connect from learning rules, so always 0.

	
class nengo.Probe(*args, **kwargs)[source]¶
	A probe is an object that collects data from the simulation.

This is to be used in any situation where you wish to gather simulation
data (spike data, represented values, neuron voltages, etc.) for analysis.

Probes do not directly affect the simulation.

All Nengo objects can be probed (except Probes themselves).
Each object has different attributes that can be probed.
To see what is probeable for each object, print its
probeable attribute.

with nengo.Network():
 ens = nengo.Ensemble(10, 1)
print(ens.probeable)

('decoded_output', 'input', 'scaled_encoders')

	Parameters
		targetEnsemble, Neurons, Node, or Connection
	The object to probe.

	attrstr, optional
	The signal to probe. Refer to the target’s probeable list for
details. If None, the first element in the probeable list
will be used.

	sample_everyfloat, optional
	Sampling period in seconds. If None, the dt of the simluation
will be used.

	synapseSynapse, optional
	A synaptic model to filter the probed signal.

	solverSolver, optional
	Solver to compute decoders
for probes that require them.

	labelstr, optional
	A name for the probe. Used for debugging and visualization.

	seedint, optional
	The seed used for random number generation.

	Attributes
		attrstr or None
	The signal that will be probed. If None, the first element of the
target’s probeable list will be used.

	sample_everyfloat or None
	Sampling period in seconds. If None, the dt of the simluation
will be used.

	solverSolver or None
	Solver to compute decoders. Only used for probes
of an ensemble’s decoded output.

	synapseSynapse or None
	A synaptic model to filter the probed signal.

	targetEnsemble, Neurons, Node, or Connection
	The object to probe.

	
property obj¶
	(Nengo object) The underlying Nengo object target.

	
property size_in¶
	(int) Dimensionality of the probed signal.

	
property size_out¶
	(int) Cannot connect from probes, so always 0.

	
property slice¶
	(slice) The slice associated with the Nengo object target.

Distributions¶

	nengo.dists.Distribution
	A base class for probability distributions.

	nengo.dists.get_samples
	Convenience function to sample a distribution or return samples.

	nengo.dists.PDF
	An arbitrary distribution from a PDF.

	nengo.dists.Uniform
	A uniform distribution.

	nengo.dists.Gaussian
	A Gaussian distribution.

	nengo.dists.Exponential
	An exponential distribution (optionally with high values clipped).

	nengo.dists.UniformHypersphere
	Uniform distribution on or in an n-dimensional unit hypersphere.

	nengo.dists.QuasirandomSequence
	Sequence for quasi Monte Carlo sampling the [0, 1]-cube.

	nengo.dists.ScatteredHypersphere
	Quasirandom distribution over the hypersphere or hyperball.

	nengo.dists.Choice
	Discrete distribution across a set of possible values.

	nengo.dists.Samples
	A set of samples.

	nengo.dists.SqrtBeta
	Distribution of the square root of a Beta distributed random variable.

	nengo.dists.SubvectorLength
	Distribution of the length of a subvectors of a unit vector.

	nengo.dists.CosineSimilarity
	Distribution of the cosine of the angle between two random vectors.

	
class nengo.dists.Distribution[source]¶
	A base class for probability distributions.

The only thing that a probabilities distribution need to define is a
Distribution.sample method. This base class ensures that all distributions
accept the same arguments for the sample function.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.DistributionParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	A Distribution.

	
class nengo.dists.DistOrArrayParam(name, default=Unconfigurable, sample_shape=None, sample_dtype=<class 'numpy.float64'>, optional=False, readonly=None)[source]¶
	Can be a Distribution or samples from a distribution.

	
nengo.dists.get_samples(dist_or_samples, n, d=None, rng=numpy.random)[source]¶
	Convenience function to sample a distribution or return samples.

Use this function in situations where you accept an argument that could
be a distribution, or could be an array_like of samples.

	Parameters
		dist_or_samplesDistribution or (n, d) array_like
	Source of the samples to be returned.

	nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return.

	rngRandomState, optional
	Random number generator.

	Returns
		samples(n, d) array_like
	

Examples

from nengo.dists import get_samples

rng = np.random.RandomState(seed=0)

def mean(values, n=100):
 samples = get_samples(values, n=n, rng=rng)
 print(f"{np.mean(samples):.4f}")

mean([1, 2, 3, 4])
mean(nengo.dists.Gaussian(0, 1))

2.5000
0.0598

	
class nengo.dists.PDF(x, p)[source]¶
	An arbitrary distribution from a PDF.

	Parameters
		xvector_like (n,)
	Values of the points to sample from (interpolated).

	pvector_like (n,)
	Probabilities of the x points.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.Uniform(low, high, integer=False)[source]¶
	A uniform distribution.

It’s equally likely to get any scalar between low and high.

Note that the order of low and high doesn’t matter;
if low < high this will still work, and low will still
be a closed interval while high is open.

	Parameters
		lowNumber
	The closed lower bound of the uniform distribution; samples >= low

	highNumber
	The open upper bound of the uniform distribution; samples < high

	integerboolean, optional
	If true, sample from a uniform distribution of integers. In this case,
low and high should be integers.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.Gaussian(mean, std)[source]¶
	A Gaussian distribution.

This represents a bell-curve centred at mean and with
spread represented by the standard deviation, std.

	Parameters
		meanNumber
	The mean of the Gaussian.

	stdNumber
	The standard deviation of the Gaussian.

	Raises
		ValidationError if std is <= 0
	

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.Exponential(scale, shift=0.0, high=inf)[source]¶
	An exponential distribution (optionally with high values clipped).

If high is left to its default value of infinity, this is a standard
exponential distribution. If high is set, then any sampled values at
or above high will be clipped so they are slightly below high.
This is useful for thresholding.

The probability distribution function (PDF) is given by:

 | 0 if x < shift
p(x) = | 1/scale * exp(-(x - shift)/scale) if x >= shift and x < high
 | n if x == high - eps
 | 0 if x >= high

where n is such that the PDF integrates to one, and eps is an
infinitesimally small number such that samples of x are strictly less
than high (in practice, eps depends on floating point precision).

	Parameters
		scalefloat
	The scale parameter (inverse of the rate parameter lambda). Larger
values make the distribution narrower (sharper peak).

	shiftfloat, optional
	Amount to shift the distribution by. There will be no values smaller
than this shift when sampling from the distribution.

	highfloat, optional
	All values larger than or equal to this value will be clipped to
slightly less than this value.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.UniformHypersphere(surface=False, min_magnitude=0)[source]¶
	Uniform distribution on or in an n-dimensional unit hypersphere.

Sample points are uniformly distributed across the volume (default) or
surface of an n-dimensional unit hypersphere.

	Parameters
		surfacebool, optional
	Whether sample points should be distributed uniformly
over the surface of the hyperphere (True),
or within the hypersphere (False).

	min_magnitudeNumber, optional
	Lower bound on the returned vector magnitudes (such that they are in
the range [min_magnitude, 1]). Must be in the range [0, 1).
Ignored if surface is True.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.QuasirandomSequence[source]¶
	Sequence for quasi Monte Carlo sampling the [0, 1]-cube.

This is similar to np.random.uniform(0, 1, size=(num, d)), but with the
additional property that each d-dimensional point is uniformly scattered.

While the sequence is defined deterministically, we introduce two stochastic
elements to encourage heterogeneity in models using these sequences.
First, we offset the start of the sequence by a random number between 0 and 1
to ensure we don’t oversample points aligned to the step size.
Second, we shuffle the resulting sequence before returning to ensure we don’t
introduce correlations between parameters sampled from this distribution.

This is based on the tutorial and code from 1.

See also

	ScatteredHypersphere
	

References

	1
	Martin Roberts. “The Unreasonable Effectiveness of Quasirandom Sequences.”
https://web.archive.org/web/20220114023542/http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/

Examples

rd = nengo.dists.QuasirandomSequence().sample(10000, 2)
plt.scatter(*rd.T, c=np.arange(len(rd)), cmap='Blues', s=7)

	
sample(self, n, d=1, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.ScatteredHypersphere(surface=False, min_magnitude=0, base=QuasirandomSequence(), method='sct-approx')[source]¶
	Quasirandom distribution over the hypersphere or hyperball.

Applies a spherical transform to the given quasirandom sequence
(by default QuasirandomSequence) to obtain uniformly scattered samples.

This distribution has the nice mathematical property that the discrepancy
between the empirical distribution and \(n\) samples is
\(\widetilde{\mathcal{O}} (1 / n)\) as opposed to
\(\mathcal{O} (1 / \sqrt{n})\) for the Monte Carlo method [1].
This means that the number of samples is effectively squared, making this
useful as a means for sampling eval_points and encoders.

	Parameters
		surfacebool, optional
	Whether sample points should be distributed uniformly
over the surface of the hyperphere (True),
or within the hypersphere (False).

	min_magnitudeNumber, optional
	Lower bound on the returned vector magnitudes (such that they are in
the range [min_magnitude, 1]). Must be in the range [0, 1).
Ignored if surface is True.

	baseDistribution, optional
	The base distribution from which to sample quasirandom numbers.

	method{“sct-approx”, “sct”, “tfww”}
	Method to use for mapping points to the hypersphere.

	“sct-approx”: Same as “sct”, but uses lookup table to approximate the
beta distribution, making it faster with almost exactly the same result.

	“sct”: Use the exact Spherical Coordinate Transform
(section 1.5.2 of [1]).

	“tfww”: Use the Tashiro-Fang-Wang-Wong method (section 4.3 of [1]).
Faster than “sct” and “sct-approx”, with the same level of uniformity
for larger numbers of samples (n >= 4000, approximately).

See also

	UniformHypersphere
	
	QuasirandomSequence
	

Notes

The QuasirandomSequence distribution is mostly deterministic.
Nondeterminism comes from a random d-dimensional rotation.

References

	1(1,2,3)
	K.-T. Fang and Y. Wang, Number-Theoretic Methods in Statistics.
Chapman & Hall, 1994.

Examples

Plot points sampled from the surface of the sphere in 3 dimensions:

from mpl_toolkits.mplot3d import Axes3D

points = nengo.dists.ScatteredHypersphere(surface=True).sample(1000, d=3)

ax = plt.subplot(111, projection="3d")
ax.scatter(*points.T, s=5)

Plot points sampled from the volume of the sphere in 2 dimensions (i.e. circle):

points = nengo.dists.ScatteredHypersphere(surface=False).sample(1000, d=2)
plt.scatter(*points.T, s=5)

	
classmethod spherical_transform_sct(samples, approx=False)[source]¶
	Map samples from the [0, 1]-cube onto the hypersphere.

Uses the SCT method described in section 1.5.3 of Fang and Wang (1994).

	
static spherical_transform_tfww(c_samples)[source]¶
	Map samples from the [0, 1]-cube onto the hypersphere surface.

Uses the TFWW method described in section 4.3 of Fang and Wang (1994).

	
static random_orthogonal(d, rng=numpy.random)[source]¶
	Returns a random orthogonal matrix.

	
sample(self, n, d=1, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.Choice(options, weights=None)[source]¶
	Discrete distribution across a set of possible values.

The same as Numpy random’s choice,
except can take vector or matrix values for the choices.

	Parameters
		options(N, …) array_like
	The options (choices) to choose between. The choice is always done
along the first axis, so if options is a matrix, the options are
the rows of that matrix.

	weights(N,) array_like, optional
	Weights controlling the probability of selecting each option. Will
automatically be normalized. If None, weights be uniformly distributed.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.Samples(samples)[source]¶
	A set of samples.

This class is a subclass of Distribution so that it can be used in any
situation that calls for a Distribution. However, the call to
Distribution.sample must match the dimensions of the samples or
a ValidationError will be raised.

	Parameters
		samples(n, d) array_like
		n and d must match what is eventually passed to
	Distribution.sample.

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
class nengo.dists.SqrtBeta(n, m=1)[source]¶
	Distribution of the square root of a Beta distributed random variable.

Given n + m dimensional random unit vectors, the length of subvectors
with m elements will be distributed according to this distribution.

	Parameters
		n: int
	Number of subvectors.

	m: int, optional
	Length of each subvector.

See also

	nengo.dists.SubvectorLength
	

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
cdf(x)[source]¶
	Cumulative distribution function.

Note

Requires SciPy.

	Parameters
		xarray_like
	Evaluation points in [0, 1].

	Returns
		cdfarray_like
	Probability that X <= x.

	
pdf(x)[source]¶
	Probability distribution function.

Note

Requires SciPy.

	Parameters
		xarray_like
	Evaluation points in [0, 1].

	Returns
		pdfarray_like
	Probability density at x.

	
ppf(y)[source]¶
	Percent point function (inverse cumulative distribution).

Note

Requires SciPy.

	Parameters
		yarray_like
	Cumulative probabilities in [0, 1].

	Returns
		ppfarray_like
	Evaluation points x in [0, 1] such that P(X <= x) = y.

	
class nengo.dists.SubvectorLength(dimensions, subdimensions=1)[source]¶
	Distribution of the length of a subvectors of a unit vector.

	Parameters
		dimensionsint
	Dimensionality of the complete unit vector.

	subdimensionsint, optional
	Dimensionality of the subvector.

See also

	nengo.dists.SqrtBeta
	

	
class nengo.dists.CosineSimilarity(dimensions)[source]¶
	Distribution of the cosine of the angle between two random vectors.

The “cosine similarity” is the cosine of the angle between two vectors,
which is equal to the dot product of the vectors, divided by the L2-norms
of the individual vectors. When these vectors are unit length, this is then
simply the distribution of their dot product.

This is also equivalent to the distribution of a single coefficient from a
unit vector (a single dimension of UniformHypersphere(surface=True)).
Furthermore, CosineSimilarity(d+2) is equivalent to the distribution of
a single coordinate from points uniformly sampled from the d-dimensional
unit ball (a single dimension of
UniformHypersphere(surface=False).sample(n, d)). These relationships
have been detailed in [Voelker2017].

This can be used to calculate an intercept c = ppf(1 - p) such that
dot(u, v) >= c with probability p, for random unit vectors u
and v. In other words, a neuron with intercept ppf(1 - p) will
fire with probability p for a random unit length input.

	Voelker2017
	Aaron R. Voelker, Jan Gosmann, and Terrence C. Stewart.
Efficiently sampling vectors and coordinates from the n-sphere and
n-ball. Technical Report, Centre for Theoretical Neuroscience,
Waterloo, ON, 2017

	Parameters
		dimensions: int
	Dimensionality of the complete unit vector.

See also

	nengo.dists.SqrtBeta
	

	
sample(self, n, d=None, rng=numpy.random)[source]¶
	Samples the distribution.

	Parameters
		nint
	Number samples to take.

	dint or None, optional
	The number of dimensions to return. If this is an int, the return
value will be of shape (n, d). If None, the return
value will be of shape (n,).

	rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		samples(n,) or (n, d) array_like
	Samples as a 1d or 2d array depending on d. The second
dimension enumerates the dimensions of the process.

	
cdf(x)[source]¶
	Cumulative distribution function.

Note

Requires SciPy.

	Parameters
		xarray_like
	Evaluation points in [0, 1].

	Returns
		cdfarray_like
	Probability that X <= x.

	
pdf(x)[source]¶
	Probability distribution function.

Note

Requires SciPy.

	Parameters
		xarray_like
	Evaluation points in [0, 1].

	Returns
		pdfarray_like
	Probability density at x.

	
ppf(y)[source]¶
	Percent point function (inverse cumulative distribution).

Note

Requires SciPy.

	Parameters
		yarray_like
	Cumulative probabilities in [0, 1].

	Returns
		ppfarray_like
	Evaluation points x in [0, 1] such that P(X <= x) = y.

Learning rule types¶

	nengo.learning_rules.LearningRuleType
	Base class for all learning rule objects.

	nengo.PES
	Prescribed Error Sensitivity learning rule.

	nengo.RLS
	Recursive least-squares rule for online decoder optimization.

	nengo.BCM
	Bienenstock-Cooper-Munroe learning rule.

	nengo.Oja
	Oja learning rule.

	nengo.Voja
	Vector Oja learning rule.

	
class nengo.learning_rules.LearningRuleTypeSizeInParam(name, default=Unconfigurable, low=None, high=None, low_open=False, high_open=False, optional=False, readonly=None)[source]¶
	

	
class nengo.learning_rules.LearningRuleType(learning_rate=Default<1e-06>, size_in=0)[source]¶
	Base class for all learning rule objects.

To use a learning rule, pass it as a learning_rule_type keyword
argument to the Connection on which you want to do learning.

Each learning rule exposes two important pieces of metadata that the
builder uses to determine what information should be stored.

The size_in is the dimensionality of the incoming error signal. It
can either take an integer or one of the following string values:

	'pre': vector error signal in pre-object space

	'post': vector error signal in post-object space

	'mid': vector error signal in the conn.size_mid space

	'pre_state': vector error signal in pre-synaptic ensemble space

	'post_state': vector error signal in post-synaptic ensemble space

The difference between 'post_state' and 'post' is that with the
former, if a Neurons object is passed, it will use the dimensionality
of the corresponding Ensemble, whereas the latter simply uses the
post object size_in. Similarly with 'pre_state' and 'pre'.

The modifies attribute denotes the signal targeted by the rule.
Options are:

	'encoders'

	'decoders'

	'weights'

	Parameters
		learning_ratefloat, optional
	A scalar indicating the rate at which modifies will be adjusted.

	size_inint, str, optional
	Dimensionality of the error signal (see above).

	Attributes
		learning_ratefloat
	A scalar indicating the rate at which modifies will be adjusted.

	size_inint, str
	Dimensionality of the error signal.

	modifiesstr
	The signal targeted by the learning rule.

	
class nengo.PES(learning_rate=Default<0.0001>, pre_synapse=Default<Lowpass(tau=0.005)>)[source]¶
	Prescribed Error Sensitivity learning rule.

Modifies a connection’s decoders to minimize an error signal provided
through a connection to the connection’s learning rule.

	Parameters
		learning_ratefloat, optional
	A scalar indicating the rate at which weights will be adjusted.

	pre_synapseSynapse, optional
	Synapse model used to filter the pre-synaptic activities.

	Attributes
		learning_ratefloat
	A scalar indicating the rate at which weights will be adjusted.

	pre_synapseSynapse
	Synapse model used to filter the pre-synaptic activities.

	
class nengo.RLS(learning_rate=Default<0.001>, pre_synapse=Default<Lowpass(tau=0.005)>)[source]¶
	Recursive least-squares rule for online decoder optimization.

This implements an online version of the standard least-squares solvers used
to learn connection weights offline (e.g. nengo.solvers.LstsqL2). It can be
applied in the same scenarios as PES, to minimize an error signal.

The cost of RLS is \(\mathcal{O}(n^2)\) extra time and memory. If possible,
it is more efficient to do the learning offline using e.g. LstsqL2.

	Parameters
		learning_ratefloat, optional
	Effective learning rate. This is better understood as
\(\frac{1}{\alpha}\), where \(\alpha\) is an L2-regularization
term. A large learning rate means little regularization, which implies
quick over-fitting. A small learning rate means large regularization,
which translates to slower learning 2.

	pre_synapseSynapse, optional
	Synapse model applied to the pre-synaptic neural activities.

See also

	nengo.PES
	
	nengo.solvers.LstsqL2
	

Notes

RLS works by maintaining the inverse neural correlation matrix,
\(P = \Gamma^{-1}\), where \(\Gamma = A^T A + \alpha I\) are the
regularized correlations, \(A\) is a matrix of (possibly filtered)
neural activities, and \(\alpha\) is an L2-regularization term
controlled by the learning_rate. \(P\) is used to project the
error signal and update the weights each time-step.

References

	2
	Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns
of activity from chaotic neural networks. Neuron, 63(4), 544-557.

Examples

Below, we compare PES against RLS, learning a feed-forward
communication channel (identity function) online, starting with 100 spiking
LIF neurons with decoders (weights) set to zero. A faster learning rate for
PES results in over-fitting to the most recent online example, while a
slower learning rate does not learn quickly enough. This is a general problem
with greedy optimization. RLS performs better since it is L2-optimal.

from nengo.learning_rules import PES, RLS

tau = 0.005
learning_rules = (
 PES(learning_rate=1e-3, pre_synapse=tau),
 RLS(learning_rate=1e-3, pre_synapse=tau),
)

with nengo.Network() as model:
 u = nengo.Node(output=lambda t: np.sin(2 * np.pi * t))
 probes = []
 for lr in learning_rules:
 e = nengo.Node(size_in=1, output=lambda t, e: e if t < 1 else 0)
 x = nengo.Ensemble(100, 1, seed=0)
 y = nengo.Node(size_in=1)

 nengo.Connection(u, e, synapse=None, transform=-1)
 nengo.Connection(u, x, synapse=None)
 conn = nengo.Connection(
 x, y, synapse=None, learning_rule_type=lr, function=lambda x: 0
)
 nengo.Connection(y, e, synapse=None)
 nengo.Connection(e, conn.learning_rule, synapse=tau)
 probes.append(nengo.Probe(y, synapse=tau))
 probes.append(nengo.Probe(u, synapse=tau))

with nengo.Simulator(model) as sim:
 sim.run(2.0)

plt.plot(sim.trange(), sim.data[probes[0]], label=str(learning_rules[0]))
plt.plot(sim.trange(), sim.data[probes[1]], label=str(learning_rules[1]))
plt.plot(sim.trange(), sim.data[probes[2]], label="Ideal", linestyle="--")
plt.vlines([1], -1, 1, label="Training -> Testing")
plt.ylim(-2, 2)
plt.legend(loc="upper right")
plt.xlabel("Time (s)")

	
class nengo.BCM(learning_rate=Default<1e-09>, pre_synapse=Default<Lowpass(tau=0.005)>, post_synapse=Default<None>, theta_synapse=Default<Lowpass(tau=1.0)>)[source]¶
	Bienenstock-Cooper-Munroe learning rule.

Modifies connection weights as a function of the presynaptic activity
and the difference between the postsynaptic activity and the average
postsynaptic activity.

	Parameters
		learning_ratefloat, optional
	A scalar indicating the rate at which weights will be adjusted.

	pre_synapseSynapse, optional
	Synapse model used to filter the pre-synaptic activities.

	post_synapseSynapse, optional
	Synapse model used to filter the post-synaptic activities.
If None, post_synapse will be the same as pre_synapse.

	theta_synapseSynapse, optional
	Synapse model used to filter the theta signal.

Notes

The BCM rule is dependent on pre and post neural activities,
not decoded values, and so is not affected by changes in the
size of pre and post ensembles. However, if you are decoding from
the post ensemble, the BCM rule will have an increased effect on
larger post ensembles because more connection weights are changing.
In these cases, it may be advantageous to scale the learning rate
on the BCM rule by 1 / post.n_neurons.

	Attributes
		learning_ratefloat
	A scalar indicating the rate at which weights will be adjusted.

	post_synapseSynapse
	Synapse model used to filter the post-synaptic activities.

	pre_synapseSynapse
	Synapse model used to filter the pre-synaptic activities.

	theta_synapseSynapse
	Synapse model used to filter the theta signal.

	
class nengo.Oja(learning_rate=Default<1e-06>, pre_synapse=Default<Lowpass(tau=0.005)>, post_synapse=Default<None>, beta=Default<1.0>)[source]¶
	Oja learning rule.

Modifies connection weights according to the Hebbian Oja rule, which
augments typically Hebbian coactivity with a “forgetting” term that is
proportional to the weight of the connection and the square of the
postsynaptic activity.

	Parameters
		learning_ratefloat, optional
	A scalar indicating the rate at which weights will be adjusted.

	pre_synapseSynapse, optional
	Synapse model used to filter the pre-synaptic activities.

	post_synapseSynapse, optional
	Synapse model used to filter the post-synaptic activities.
If None, post_synapse will be the same as pre_synapse.

	betafloat, optional
	A scalar weight on the forgetting term.

Notes

The Oja rule is dependent on pre and post neural activities,
not decoded values, and so is not affected by changes in the
size of pre and post ensembles. However, if you are decoding from
the post ensemble, the Oja rule will have an increased effect on
larger post ensembles because more connection weights are changing.
In these cases, it may be advantageous to scale the learning rate
on the Oja rule by 1 / post.n_neurons.

	Attributes
		betafloat
	A scalar weight on the forgetting term.

	learning_ratefloat
	A scalar indicating the rate at which weights will be adjusted.

	post_synapseSynapse
	Synapse model used to filter the post-synaptic activities.

	pre_synapseSynapse
	Synapse model used to filter the pre-synaptic activities.

	
class nengo.Voja(learning_rate=Default<0.01>, post_synapse=Default<Lowpass(tau=0.005)>)[source]¶
	Vector Oja learning rule.

Modifies an ensemble’s encoders to be selective to its inputs.

A connection to the learning rule will provide a scalar weight for the
learning rate, minus 1. For instance, 0 is normal learning, -1 is no
learning, and less than -1 causes anti-learning or “forgetting”.

	Parameters
		post_taufloat, optional
	Filter constant on activities of neurons in post population.

	learning_ratefloat, optional
	A scalar indicating the rate at which encoders will be adjusted.

	post_synapseSynapse, optional
	Synapse model used to filter the post-synaptic activities.

	Attributes
		learning_ratefloat
	A scalar indicating the rate at which encoders will be adjusted.

	post_synapseSynapse
	Synapse model used to filter the post-synaptic activities.

	
class nengo.learning_rules.LearningRuleTypeParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	

Neuron types¶

	nengo.neurons.settled_firingrate
	Compute firing rates (in Hz) for given vector input, x.

	nengo.neurons.NeuronType
	Base class for Nengo neuron models.

	nengo.Direct
	Signifies that an ensemble should simulate in direct mode.

	nengo.RectifiedLinear
	A rectified linear neuron model.

	nengo.SpikingRectifiedLinear
	A rectified integrate and fire neuron model.

	nengo.Sigmoid
	A non-spiking neuron model whose response curve is a sigmoid.

	nengo.Tanh
	A non-spiking neuron model whose response curve is a hyperbolic tangent.

	nengo.LIFRate
	Non-spiking version of the leaky integrate-and-fire (LIF) neuron model.

	nengo.LIF
	Spiking version of the leaky integrate-and-fire (LIF) neuron model.

	nengo.AdaptiveLIFRate
	Adaptive non-spiking version of the LIF neuron model.

	nengo.AdaptiveLIF
	Adaptive spiking version of the LIF neuron model.

	nengo.Izhikevich
	Izhikevich neuron model.

	nengo.neurons.RatesToSpikesNeuronType
	Base class for neuron types that turn rate types into spiking ones.

	nengo.RegularSpiking
	Turn a rate neuron type into a spiking one with regular inter-spike intervals.

	nengo.StochasticSpiking
	Turn a rate neuron type into a spiking one using stochastic rounding.

	nengo.PoissonSpiking
	Turn a rate neuron type into a spiking one with Poisson spiking statistics.

	
nengo.neurons.settled_firingrate(step, J, state, dt=0.001, settle_time=0.1, sim_time=1.0)[source]¶
	Compute firing rates (in Hz) for given vector input, x.

Unlike the default naive implementation, this approach takes into
account some characteristics of spiking neurons. We start
by simulating the neurons for a short amount of time, to let any
initial transients settle. Then, we run the neurons for a second
and find the average (which should approximate the firing rate).

	Parameters
		stepfunction
	the step function of the neuron type

	Jndarray
	a vector of currents to generate firing rates from

	statedict of ndarrays
	additional state needed by the step function

	
class nengo.neurons.NeuronType(initial_state=None)[source]¶
	Base class for Nengo neuron models.

	Parameters
		initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	Attributes
		state{str: Distribution}
	State variables held by the neuron type during simulation.
Values in the dict indicate their initial values, or how
to obtain those initial values. These elements can also be
probed in the neuron population.

	negativebool
	Whether the neurons can emit negative outputs (i.e. negative spikes or rates).

	
current(x, gain, bias)[source]¶
	Compute current injected in each neuron given input, gain and bias.

Note that x is assumed to be already projected onto the encoders
associated with the neurons and normalized to radius 1, so the maximum
expected current for a neuron occurs when input for that neuron is 1.

	Parameters
		x(n_samples,) or (n_samples, n_neurons) array_like
	Scalar inputs for which to calculate current.

	gain(n_neurons,) array_like
	Gains associated with each neuron.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	Returns
		current(n_samples, n_neurons)
	Current to be injected in each neuron.

	
gain_bias(max_rates, intercepts)[source]¶
	Compute the gain and bias needed to satisfy max_rates, intercepts.

This takes the neurons, approximates their response function, and then
uses that approximation to find the gain and bias value that will give
the requested intercepts and max_rates.

Note that this default implementation is very slow! Whenever possible,
subclasses should override this with a neuron-specific implementation.

	Parameters
		max_rates(n_neurons,) array_like
	Maximum firing rates of neurons.

	intercepts(n_neurons,) array_like
	X-intercepts of neurons.

	Returns
		gain(n_neurons,) array_like
	Gain associated with each neuron. Sometimes denoted alpha.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	
max_rates_intercepts(gain, bias)[source]¶
	Compute the max_rates and intercepts given gain and bias.

Note that this default implementation is very slow! Whenever possible,
subclasses should override this with a neuron-specific implementation.

	Parameters
		gain(n_neurons,) array_like
	Gain associated with each neuron. Sometimes denoted alpha.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	Returns
		max_rates(n_neurons,) array_like
	Maximum firing rates of neurons.

	intercepts(n_neurons,) array_like
	X-intercepts of neurons.

	
rates(x, gain, bias)[source]¶
	Compute firing rates (in Hz) for given input x.

This default implementation takes the naive approach of running the
step function for a second. This should suffice for most rate-based
neuron types; for spiking neurons it will likely fail (those models
should override this function).

Note that x is assumed to be already projected onto the encoders
associated with the neurons and normalized to radius 1, so the maximum
expected rate for a neuron occurs when input for that neuron is 1.

	Parameters
		x(n_samples,) or (n_samples, n_neurons) array_like
	Scalar inputs for which to calculate rates.

	gain(n_neurons,) array_like
	Gains associated with each neuron.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	Returns
		rates(n_samples, n_neurons) ndarray
	The firing rates at each given value of x.

	
step(dt, J, output, **state)[source]¶
	Implements the differential equation for this neuron type.

At a minimum, NeuronType subclasses must implement this method.
That implementation should modify the output parameter rather
than returning anything, for efficiency reasons.

	Parameters
		dtfloat
	Simulation timestep.

	J(n_neurons,) array_like
	Input currents associated with each neuron.

	output(n_neurons,) array_like
	Output activity associated with each neuron (e.g., spikes or firing rates).

	state{str: array_like}
	State variables associated with the population.

	
class nengo.neurons.NeuronTypeParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	

	
class nengo.Direct(initial_state=None)[source]¶
	Signifies that an ensemble should simulate in direct mode.

In direct mode, the ensemble represents and transforms signals perfectly,
rather than through a neural approximation. Note that direct mode ensembles
with recurrent connections can easily diverge; most other neuron types will
instead saturate at a certain high firing rate.

	
gain_bias(max_rates, intercepts)[source]¶
	Always returns None, None.

	
max_rates_intercepts(gain, bias)[source]¶
	Always returns None, None.

	
rates(x, gain, bias)[source]¶
	Always returns x.

	
step(dt, J, output)[source]¶
	Raises an error if called.

Rather than calling this function, the simulator will detect that the
ensemble is in direct mode, and bypass the neural approximation.

	
class nengo.RectifiedLinear(amplitude=1, initial_state=None)[source]¶
	A rectified linear neuron model.

Each neuron is modeled as a rectified line. That is, the neuron’s activity
scales linearly with current, unless it passes below zero, at which point
the neural activity will stay at zero.

	Parameters
		amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
gain_bias(max_rates, intercepts)[source]¶
	Determine gain and bias by shifting and scaling the lines.

	
max_rates_intercepts(gain, bias)[source]¶
	Compute the inverse of gain_bias.

	
step(dt, J, output)[source]¶
	Implement the rectification nonlinearity.

	
class nengo.SpikingRectifiedLinear(amplitude=1, initial_state=None)[source]¶
	A rectified integrate and fire neuron model.

Each neuron is modeled as a rectified line. That is, the neuron’s activity
scales linearly with current, unless the current is less than zero, at
which point the neural activity will stay at zero. This is a spiking
version of the RectifiedLinear neuron model.

	Parameters
		amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
rates(x, gain, bias)[source]¶
	Use RectifiedLinear to determine rates.

	
step(dt, J, output, voltage)[source]¶
	Implement the integrate and fire nonlinearity.

	
class nengo.Sigmoid(tau_ref=0.0025, initial_state=None)[source]¶
	A non-spiking neuron model whose response curve is a sigmoid.

Since the tuning curves are strictly positive, the intercepts
correspond to the inflection point of each sigmoid. That is,
f(intercept) = 0.5 where f is the pure sigmoid function.

	Parameters
		tau_reffloat
	The neuron refractory period, in seconds. The maximum firing rate of the
neurons is 1 / tau_ref. Must be positive (i.e. tau_ref > 0).

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
gain_bias(max_rates, intercepts)[source]¶
	Analytically determine gain, bias.

	
max_rates_intercepts(gain, bias)[source]¶
	Compute the inverse of gain_bias.

	
step(dt, J, output)[source]¶
	Implement the sigmoid nonlinearity.

	
class nengo.Tanh(tau_ref=0.0025, initial_state=None)[source]¶
	A non-spiking neuron model whose response curve is a hyperbolic tangent.

	Parameters
		tau_reffloat
	The neuron refractory period, in seconds. The maximum firing rate of the
neurons is 1 / tau_ref. Must be positive (i.e. tau_ref > 0).

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
gain_bias(max_rates, intercepts)[source]¶
	Analytically determine gain, bias.

	
max_rates_intercepts(gain, bias)[source]¶
	Compute the inverse of gain_bias.

	
step(dt, J, output)[source]¶
	Implement the tanh nonlinearity.

	
class nengo.LIFRate(tau_rc=0.02, tau_ref=0.002, amplitude=1, initial_state=None)[source]¶
	Non-spiking version of the leaky integrate-and-fire (LIF) neuron model.

	Parameters
		tau_rcfloat
	Membrane RC time constant, in seconds. Affects how quickly the membrane
voltage decays to zero in the absence of input (larger = slower decay).

	tau_reffloat
	Absolute refractory period, in seconds. This is how long the
membrane voltage is held at zero after a spike.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
gain_bias(max_rates, intercepts)[source]¶
	Analytically determine gain, bias.

	
max_rates_intercepts(gain, bias)[source]¶
	Compute the inverse of gain_bias.

	
rates(x, gain, bias)[source]¶
	Always use LIFRate to determine rates.

	
step(dt, J, output)[source]¶
	Implement the LIFRate nonlinearity.

	
class nengo.LIF(tau_rc=0.02, tau_ref=0.002, min_voltage=0, amplitude=1, initial_state=None)[source]¶
	Spiking version of the leaky integrate-and-fire (LIF) neuron model.

	Parameters
		tau_rcfloat
	Membrane RC time constant, in seconds. Affects how quickly the membrane
voltage decays to zero in the absence of input (larger = slower decay).

	tau_reffloat
	Absolute refractory period, in seconds. This is how long the
membrane voltage is held at zero after a spike.

	min_voltagefloat
	Minimum value for the membrane voltage. If -np.inf, the voltage
is never clipped.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
step(dt, J, output, voltage, refractory_time)[source]¶
	Implement the LIFRate nonlinearity.

	
class nengo.AdaptiveLIFRate(tau_n=1, inc_n=0.01, tau_rc=0.02, tau_ref=0.002, amplitude=1, initial_state=None)[source]¶
	Adaptive non-spiking version of the LIF neuron model.

Works as the LIF model, except with adaptation state n, which is
subtracted from the input current. Its dynamics are:

tau_n dn/dt = -n

where n is incremented by inc_n when the neuron spikes.

	Parameters
		tau_nfloat
	Adaptation time constant. Affects how quickly the adaptation state
decays to zero in the absence of spikes (larger = slower decay).

	inc_nfloat
	Adaptation increment. How much the adaptation state is increased after
each spike.

	tau_rcfloat
	Membrane RC time constant, in seconds. Affects how quickly the membrane
voltage decays to zero in the absence of input (larger = slower decay).

	tau_reffloat
	Absolute refractory period, in seconds. This is how long the
membrane voltage is held at zero after a spike.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

References

	1
	Camera, Giancarlo La, et al. “Minimal models of adapted neuronal
response to in Vivo-Like input currents.” Neural computation
16.10 (2004): 2101-2124.

	
step(dt, J, output, adaptation)[source]¶
	Implement the AdaptiveLIFRate nonlinearity.

	
class nengo.AdaptiveLIF(tau_n=1, inc_n=0.01, tau_rc=0.02, tau_ref=0.002, min_voltage=0, amplitude=1, initial_state=None)[source]¶
	Adaptive spiking version of the LIF neuron model.

Works as the LIF model, except with adaptation state n, which is
subtracted from the input current. Its dynamics are:

tau_n dn/dt = -n

where n is incremented by inc_n when the neuron spikes.

	Parameters
		tau_nfloat
	Adaptation time constant. Affects how quickly the adaptation state
decays to zero in the absence of spikes (larger = slower decay).

	inc_nfloat
	Adaptation increment. How much the adaptation state is increased after
each spike.

	tau_rcfloat
	Membrane RC time constant, in seconds. Affects how quickly the membrane
voltage decays to zero in the absence of input (larger = slower decay).

	tau_reffloat
	Absolute refractory period, in seconds. This is how long the
membrane voltage is held at zero after a spike.

	min_voltagefloat
	Minimum value for the membrane voltage. If -np.inf, the voltage
is never clipped.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

References

	1
	Camera, Giancarlo La, et al. “Minimal models of adapted neuronal
response to in Vivo-Like input currents.” Neural computation
16.10 (2004): 2101-2124.

	
step(dt, J, output, voltage, refractory_time, adaptation)[source]¶
	Implement the AdaptiveLIF nonlinearity.

	
class nengo.Izhikevich(tau_recovery=0.02, coupling=0.2, reset_voltage=- 65.0, reset_recovery=8.0, initial_state=None)[source]¶
	Izhikevich neuron model.

This implementation is based on the original paper [1];
however, we rename some variables for clarity.
What was originally ‘v’ we term ‘voltage’, which represents the membrane
potential of each neuron. What was originally ‘u’ we term ‘recovery’,
which represents membrane recovery, “which accounts for the activation
of K+ ionic currents and inactivation of Na+ ionic currents.”
The ‘a’, ‘b’, ‘c’, and ‘d’ parameters are also renamed
(see the parameters below).

We use default values that correspond to regular spiking (‘RS’) neurons.
For other classes of neurons, set the parameters as follows.

	Intrinsically bursting (IB): reset_voltage=-55, reset_recovery=4

	Chattering (CH): reset_voltage=-50, reset_recovery=2

	Fast spiking (FS): tau_recovery=0.1

	Low-threshold spiking (LTS): coupling=0.25

	Resonator (RZ): tau_recovery=0.1, coupling=0.26

	Parameters
		tau_recoveryfloat, optional
	(Originally ‘a’) Time scale of the recovery variable.

	couplingfloat, optional
	(Originally ‘b’) How sensitive recovery is to subthreshold
fluctuations of voltage.

	reset_voltagefloat, optional
	(Originally ‘c’) The voltage to reset to after a spike, in millivolts.

	reset_recoveryfloat, optional
	(Originally ‘d’) The recovery value to reset to after a spike.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

References

	1
	E. M. Izhikevich, “Simple model of spiking neurons.”
IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1569-1572.
(http://www.izhikevich.org/publications/spikes.pdf)

	
rates(x, gain, bias)[source]¶
	Estimates steady-state firing rate given gain and bias.

	
step(dt, J, output, voltage, recovery)[source]¶
	Implement the Izhikevich nonlinearity.

	
class nengo.neurons.RatesToSpikesNeuronType(base_type, amplitude=1.0, initial_state=None)[source]¶
	Base class for neuron types that turn rate types into spiking ones.

	
gain_bias(max_rates, intercepts)[source]¶
	Compute the gain and bias needed to satisfy max_rates, intercepts.

This takes the neurons, approximates their response function, and then
uses that approximation to find the gain and bias value that will give
the requested intercepts and max_rates.

Note that this default implementation is very slow! Whenever possible,
subclasses should override this with a neuron-specific implementation.

	Parameters
		max_rates(n_neurons,) array_like
	Maximum firing rates of neurons.

	intercepts(n_neurons,) array_like
	X-intercepts of neurons.

	Returns
		gain(n_neurons,) array_like
	Gain associated with each neuron. Sometimes denoted alpha.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	
max_rates_intercepts(gain, bias)[source]¶
	Compute the max_rates and intercepts given gain and bias.

Note that this default implementation is very slow! Whenever possible,
subclasses should override this with a neuron-specific implementation.

	Parameters
		gain(n_neurons,) array_like
	Gain associated with each neuron. Sometimes denoted alpha.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	Returns
		max_rates(n_neurons,) array_like
	Maximum firing rates of neurons.

	intercepts(n_neurons,) array_like
	X-intercepts of neurons.

	
rates(x, gain, bias)[source]¶
	Compute firing rates (in Hz) for given input x.

This default implementation takes the naive approach of running the
step function for a second. This should suffice for most rate-based
neuron types; for spiking neurons it will likely fail (those models
should override this function).

Note that x is assumed to be already projected onto the encoders
associated with the neurons and normalized to radius 1, so the maximum
expected rate for a neuron occurs when input for that neuron is 1.

	Parameters
		x(n_samples,) or (n_samples, n_neurons) array_like
	Scalar inputs for which to calculate rates.

	gain(n_neurons,) array_like
	Gains associated with each neuron.

	bias(n_neurons,) array_like
	Bias current associated with each neuron.

	Returns
		rates(n_samples, n_neurons) ndarray
	The firing rates at each given value of x.

	
step(dt, J, output, **state)[source]¶
	Implements the differential equation for this neuron type.

At a minimum, NeuronType subclasses must implement this method.
That implementation should modify the output parameter rather
than returning anything, for efficiency reasons.

	Parameters
		dtfloat
	Simulation timestep.

	J(n_neurons,) array_like
	Input currents associated with each neuron.

	output(n_neurons,) array_like
	Output activity associated with each neuron (e.g., spikes or firing rates).

	state{str: array_like}
	State variables associated with the population.

	
class nengo.RegularSpiking(base_type, amplitude=1.0, initial_state=None)[source]¶
	Turn a rate neuron type into a spiking one with regular inter-spike intervals.

Spikes at regular intervals based on the rates of the base neuron type. [1]

	Parameters
		base_typeNeuronType
	A rate-based neuron type to convert to a regularly spiking neuron.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

References

	1
	Voelker, A. R., Rasmussen, D., & Eliasmith, C. (2020). A Spike in
Performance: Training Hybrid-Spiking Neural Networks with Quantized Activation
Functions. arXiv preprint arXiv:2002.03553.
(https://export.arxiv.org/abs/2002.03553)

	
step(dt, J, output, voltage)[source]¶
	Implements the differential equation for this neuron type.

At a minimum, NeuronType subclasses must implement this method.
That implementation should modify the output parameter rather
than returning anything, for efficiency reasons.

	Parameters
		dtfloat
	Simulation timestep.

	J(n_neurons,) array_like
	Input currents associated with each neuron.

	output(n_neurons,) array_like
	Output activity associated with each neuron (e.g., spikes or firing rates).

	state{str: array_like}
	State variables associated with the population.

	
class nengo.StochasticSpiking(base_type, amplitude=1.0, initial_state=None)[source]¶
	Turn a rate neuron type into a spiking one using stochastic rounding.

The expected number of spikes per timestep e = dt * r is determined by the
base type firing rate r and the timestep dt. Given the fractional part f
and integer part q of e, the number of generated spikes is q with
probability 1 - f and q + 1 with probability f. For e much less than
one, this is very similar to Poisson statistics.

	Parameters
		base_typeNeuronType
	A rate-based neuron type to convert to a stochastic spiking neuron.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
step(dt, J, output, rng, **base_state)[source]¶
	Implements the differential equation for this neuron type.

At a minimum, NeuronType subclasses must implement this method.
That implementation should modify the output parameter rather
than returning anything, for efficiency reasons.

	Parameters
		dtfloat
	Simulation timestep.

	J(n_neurons,) array_like
	Input currents associated with each neuron.

	output(n_neurons,) array_like
	Output activity associated with each neuron (e.g., spikes or firing rates).

	state{str: array_like}
	State variables associated with the population.

	
class nengo.PoissonSpiking(base_type, amplitude=1.0, initial_state=None)[source]¶
	Turn a rate neuron type into a spiking one with Poisson spiking statistics.

Spikes with Poisson probability based on the rates of the base neuron type.

	Parameters
		base_typeNeuronType
	A rate-based neuron type to convert to a Poisson spiking neuron.

	amplitudefloat
	Scaling factor on the neuron output. Corresponds to the relative
amplitude of the output spikes of the neuron.

	initial_state{str: Distribution or array_like}
	Mapping from state variables names to their desired initial value.
These values will override the defaults set in the class’s state attribute.

	
step(dt, J, output, rng, **base_state)[source]¶
	Implements the differential equation for this neuron type.

At a minimum, NeuronType subclasses must implement this method.
That implementation should modify the output parameter rather
than returning anything, for efficiency reasons.

	Parameters
		dtfloat
	Simulation timestep.

	J(n_neurons,) array_like
	Input currents associated with each neuron.

	output(n_neurons,) array_like
	Output activity associated with each neuron (e.g., spikes or firing rates).

	state{str: array_like}
	State variables associated with the population.

Processes¶

	nengo.Process
	A general system with input, output, and state.

	nengo.processes.WhiteNoise
	Full-spectrum white noise process.

	nengo.processes.FilteredNoise
	Filtered white noise process.

	nengo.processes.BrownNoise
	Brown noise process (aka Brownian noise, red noise, Wiener process).

	nengo.processes.WhiteSignal
	An ideal low-pass filtered white noise process.

	nengo.processes.PresentInput
	Present a series of inputs, each for the same fixed length of time.

	nengo.processes.Piecewise
	A piecewise function with different options for interpolation.

	
class nengo.processes.WhiteNoise(dist=Gaussian(mean=0, std=1), scale=True, **kwargs)[source]¶
	Full-spectrum white noise process.

	Parameters
		distDistribution, optional
	The distribution from which to draw samples.

	scalebool, optional
	Whether to scale the white noise for integration. Integrating white
noise requires using a time constant of sqrt(dt) instead of dt
on the noise term [1], to ensure the magnitude of the integrated
noise does not change with dt.

	seedint, optional
	Random number seed. Ensures noise will be the same each run.

References

	1
	Gillespie, D.T. (1996) Exact numerical simulation of the Ornstein-
Uhlenbeck process and its integral. Phys. Rev. E 54, pp. 2084-91.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
class nengo.processes.FilteredNoise(synapse=Lowpass(tau=0.005), dist=Gaussian(mean=0, std=1), scale=True, **kwargs)[source]¶
	Filtered white noise process.

This process takes white noise and filters it using the provided synapse.

	Parameters
		synapseSynapse, optional
	The synapse to use to filter the noise.

	distDistribution, optional
	The distribution used to generate the white noise.

	scalebool, optional
	Whether to scale the white noise for integration, making the output
signal invariant to dt.

	seedint, optional
	Random number seed. Ensures noise will be the same each run.

	
make_state(shape_in, shape_out, dt, dtype=None)[source]¶
	Get a dictionary of signals to represent the state of this process.

The builder uses this to allocate memory for the process state, so
that the state can be represented as part of the whole simulator state.

New in version 3.0.0.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	dtypenumpy.dtype
	The data type requested by the builder. If None, then this
function is free to choose the best type for the signals involved.

	Returns
		initial_state{string: numpy.ndarray}
	A dictionary mapping keys to arrays containing the initial state
values. The keys will be used to identify the signals in
Process.make_step.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
class nengo.processes.BrownNoise(dist=Gaussian(mean=0, std=1), **kwargs)[source]¶
	Brown noise process (aka Brownian noise, red noise, Wiener process).

This process is the integral of white noise.

	Parameters
		distDistribution, optional
	The distribution used to generate the white noise.

	seedint, optional
	Random number seed. Ensures noise will be the same each run.

	
class nengo.processes.WhiteSignal(period, high, rms=0.5, y0=None, **kwargs)[source]¶
	An ideal low-pass filtered white noise process.

This signal is created in the frequency domain, and designed to have
exactly equal power at all frequencies below the cut-off frequency,
and no power above the cut-off.

The signal is naturally periodic, so it can be used beyond its period
while still being continuous with continuous derivatives.

	Parameters
		periodfloat
	A white noise signal with this period will be generated.
Samples will repeat after this duration.

	highfloat
	The cut-off frequency of the low-pass filter, in Hz.
Must not exceed the Nyquist frequency for the simulation
timestep, which is 0.5 / dt.

	rmsfloat, optional
	The root mean square power of the filtered signal

	y0float, optional
	Align the phase of each output dimension to begin at the value
that is closest (in absolute value) to y0.

	seedint, optional
	Random number seed. Ensures noise will be the same each run.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
class nengo.processes.PresentInput(inputs, presentation_time, **kwargs)[source]¶
	Present a series of inputs, each for the same fixed length of time.

	Parameters
		inputsarray_like
	Inputs to present, where each row is an input. Rows will be flattened.

	presentation_timefloat
	Show each input for this amount of time (in seconds).

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
class nengo.processes.PiecewiseDataParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	Piecewise-specific validation for the data dictionary.

In the Piecewise data dict, the keys are points in time (float) and values
are numerical constants or callables of the same dimensionality.

	
hashvalue(instance)[source]¶
	Returns a hashable value (hash can be called on the output).

	
class nengo.processes.Piecewise(data, interpolation='zero', **kwargs)[source]¶
	A piecewise function with different options for interpolation.

Given an input dictionary of {0: 0, 0.5: -1, 0.75: 0.5, 1: 0},
this process will emit the numerical values (0, -1, 0.5, 0)
starting at the corresponding time points (0, 0.5, 0.75, 1).

The keys in the input dictionary must be times (float or int).
The values in the dictionary can be floats, lists of floats,
or numpy arrays. All lists or numpy arrays must be of the same length,
as the output shape of the process will be determined by the shape
of the values.

Interpolation on the data points using scipy.interpolate is also
supported. The default interpolation is ‘zero’, which creates a
piecewise function whose values change at the specified time points.
So the above example would be shortcut for:

def function(t):
 if t < 0.5:
 return 0
 elif t < 0.75:
 return -1
 elif t < 1:
 return 0.5
 else:
 return 0

For times before the first specified time, an array of zeros (of
the correct length) will be emitted.
This means that the above can be simplified to:

from nengo.processes import Piecewise

Piecewise({0.5: -1, 0.75: 0.5, 1: 0})

	Parameters
		datadict
	A dictionary mapping times to the values that should be emitted
at those times. Times must be numbers (ints or floats), while values
can be numbers, lists of numbers, numpy arrays of numbers,
or callables that return any of those options.

	interpolationstr, optional
	One of ‘linear’, ‘nearest’, ‘slinear’, ‘quadratic’, ‘cubic’, or ‘zero’.
Specifies how to interpolate between times with specified value.
‘zero’ creates a plain piecewise function whose values begin at
corresponding time points, while all other options interpolate
as described in scipy.interpolate.

Examples

from nengo.processes import Piecewise
process = Piecewise({0.5: 1, 0.75: -1, 1: 0})
with nengo.Network() as model:
 u = nengo.Node(process, size_out=process.default_size_out)
 up = nengo.Probe(u)
with nengo.Simulator(model, progress_bar=False) as sim:
 sim.run(1.5)
f = sim.data[up]
t = sim.trange()
print(f[t == 0.2])
print(f[t == 0.58])

[[0.]]
[[1.]]

	Attributes
		datadict
	A dictionary mapping times to the values that should be emitted
at those times. Times are numbers (ints or floats), while values
can be numbers, lists of numbers, numpy arrays of numbers,
or callables that return any of those options.

	interpolationstr
	One of ‘linear’, ‘nearest’, ‘slinear’, ‘quadratic’, ‘cubic’, or ‘zero’.
Specifies how to interpolate between times with specified value.
‘zero’ creates a plain piecewise function whose values change at
corresponding time points, while all other options interpolate
as described in scipy.interpolate.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
class nengo.Process(default_size_in=0, default_size_out=1, default_dt=0.001, seed=None)[source]¶
	A general system with input, output, and state.

For more details on how to use processes and make
custom process subclasses, see Processes and how to use them.

	Parameters
		default_size_inint
	Sets the default size in for nodes using this process.

	default_size_outint
	Sets the default size out for nodes running this process. Also,
if d is not specified in run or run_steps,
this will be used.

	default_dtfloat
	If dt is not specified in run, run_steps,
ntrange, or trange, this will be used.

	seedint, optional
	Random number seed. Ensures random factors will be the same each run.

	Attributes
		default_dtfloat
	If dt is not specified in run, run_steps,
ntrange, or trange, this will be used.

	default_size_inint
	The default size in for nodes using this process.

	default_size_outint
	The default size out for nodes running this process. Also, if d is
not specified in run or run_steps,
this will be used.

	seedint or None
	Random number seed. Ensures random factors will be the same each run.

	
apply(self, x, d=None, dt=None, rng=numpy.random, copy=True, **kwargs)[source]¶
	Run process on a given input.

Keyword arguments that do not appear in the parameter list below
will be passed to the make_step function of this process.

	Parameters
		xndarray
	The input signal given to the process.

	dint, optional
	Output dimensionality. If None, default_size_out will be used.

	dtfloat, optional
	Simulation timestep. If None, default_dt will be used.

	rngnumpy.random.RandomState
	Random number generator used for stochstic processes.

	copybool, optional
	If True, a new output array will be created for output.
If False, the input signal x will be overwritten.

	
get_rng(rng)[source]¶
	Get a properly seeded independent RNG for the process step.

	Parameters
		rngnumpy.random.RandomState
	The parent random number generator to use if the seed is not set.

	
make_state(shape_in, shape_out, dt, dtype=None)[source]¶
	Get a dictionary of signals to represent the state of this process.

The builder uses this to allocate memory for the process state, so
that the state can be represented as part of the whole simulator state.

New in version 3.0.0.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	dtypenumpy.dtype
	The data type requested by the builder. If None, then this
function is free to choose the best type for the signals involved.

	Returns
		initial_state{string: numpy.ndarray}
	A dictionary mapping keys to arrays containing the initial state
values. The keys will be used to identify the signals in
Process.make_step.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
run(self, t, d=None, dt=None, rng=numpy.random, **kwargs)[source]¶
	Run process without input for given length of time.

Keyword arguments that do not appear in the parameter list below
will be passed to the make_step function of this process.

	Parameters
		tfloat
	The length of time to run.

	dint, optional
	Output dimensionality. If None, default_size_out will be used.

	dtfloat, optional
	Simulation timestep. If None, default_dt will be used.

	rngnumpy.random.RandomState
	Random number generator used for stochstic processes.

	
run_steps(self, n_steps, d=None, dt=None, rng=numpy.random, **kwargs)[source]¶
	Run process without input for given number of steps.

Keyword arguments that do not appear in the parameter list below
will be passed to the make_step function of this process.

	Parameters
		n_stepsint
	The number of steps to run.

	dint, optional
	Output dimensionality. If None, default_size_out will be used.

	dtfloat, optional
	Simulation timestep. If None, default_dt will be used.

	rngnumpy.random.RandomState
	Random number generator used for stochstic processes.

	
ntrange(n_steps, dt=None)[source]¶
	Create time points corresponding to a given number of steps.

	Parameters
		n_stepsint
	The given number of steps.

	dtfloat, optional
	Simulation timestep. If None, default_dt will be used.

	
trange(t, dt=None)[source]¶
	Create time points corresponding to a given length of time.

	Parameters
		tfloat
	The given length of time.

	dtfloat, optional
	Simulation timestep. If None, default_dt will be used.

Solvers¶

Classes concerned with solving for decoders or full weight matrices.

	nengo.solvers.Solver
	Decoder or weight solver.

	nengo.solvers.Lstsq
	Unregularized least-squares solver.

	nengo.solvers.LstsqNoise
	Least-squares solver with additive Gaussian white noise.

	nengo.solvers.LstsqMultNoise
	Least-squares solver with multiplicative white noise.

	nengo.solvers.LstsqL2
	Least-squares solver with L2 regularization.

	nengo.solvers.LstsqL2nz
	Least-squares solver with L2 regularization on non-zero components.

	nengo.solvers.LstsqL1
	Least-squares solver with L1 and L2 regularization (elastic net).

	nengo.solvers.LstsqDrop
	Find sparser decoders/weights by dropping small values.

	nengo.solvers.Nnls
	Non-negative least-squares solver without regularization.

	nengo.solvers.NnlsL2
	Non-negative least-squares solver with L2 regularization.

	nengo.solvers.NnlsL2nz
	Non-negative least-squares with L2 regularization on nonzero components.

	nengo.solvers.NoSolver
	Manually pass in weights, bypassing the decoder solver.

	
class nengo.solvers.Solver(weights=False)[source]¶
	Decoder or weight solver.

A solver can have the weights parameter equal to True or False.

Weight solvers are used to form neuron-to-neuron weight matrices.
They can be compositional or non-compositional. Non-compositional
solvers must operate on the whole neuron-to-neuron weight matrix
(i.e., each target is a separate postsynaptic current, without the bias
term), while compositional solvers operate in the decoded state-space
(i.e., each target is a dimension in state-space). Compositional solvers
then combine the returned X with the transform and/or encoders to
generate the full weight matrix.

For a solver to be compositional, the following property must be true:

X = solver(A, Y) if and only if L(X) = solver(A, L(Y))

where L is some arbitrary linear operator (i.e., the transform and/or
encoders for the postsynaptic population). This property can then be
leveraged by the backend for efficiency. See the solver’s
compositional class attribute to determine if it is compositional.

Non-weight solvers always operate in the decoded state-space regardless of
whether they are compositional or non-compositional.

	
class nengo.solvers.SolverParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	A parameter in which the value is a Solver instance.

	
class nengo.solvers.Lstsq(weights=False, rcond=0.01)[source]¶
	Unregularized least-squares solver.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	rcondfloat, optional
	Cut-off ratio for small singular values (see numpy.linalg.lstsq).

	Attributes
		rcondfloat
	Cut-off ratio for small singular values (see numpy.linalg.lstsq).

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.LstsqNoise(weights=False, noise=0.1, solver=Cholesky())[source]¶
	Least-squares solver with additive Gaussian white noise.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	noisefloat, optional
	Amount of noise, as a fraction of the neuron activity.

	solverLeastSquaresSolver, optional
	Subsolver to use for solving the least squares problem.

	Attributes
		noisefloat
	Amount of noise, as a fraction of the neuron activity.

	solverLeastSquaresSolver
	Subsolver to use for solving the least squares problem.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.LstsqMultNoise(weights=False, noise=0.1, solver=Cholesky())[source]¶
	Least-squares solver with multiplicative white noise.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	noisefloat, optional
	Amount of noise, as a fraction of the neuron activity.

	solverLeastSquaresSolver, optional
	Subsolver to use for solving the least squares problem.

	Attributes
		noisefloat
	Amount of noise, as a fraction of the neuron activity.

	solverLeastSquaresSolver
	Subsolver to use for solving the least squares problem.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.LstsqL2(weights=False, reg=0.1, solver=Cholesky())[source]¶
	Least-squares solver with L2 regularization.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	regfloat, optional
	Amount of regularization, as a fraction of the neuron activity.

	solverLeastSquaresSolver, optional
	Subsolver to use for solving the least squares problem.

	Attributes
		regfloat
	Amount of regularization, as a fraction of the neuron activity.

	solverLeastSquaresSolver
	Subsolver to use for solving the least squares problem.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.LstsqL2nz(weights=False, reg=0.1, solver=Cholesky())[source]¶
	Least-squares solver with L2 regularization on non-zero components.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	regfloat, optional
	Amount of regularization, as a fraction of the neuron activity.

	solverLeastSquaresSolver, optional
	Subsolver to use for solving the least squares problem.

	Attributes
		regfloat
	Amount of regularization, as a fraction of the neuron activity.

	solverLeastSquaresSolver
	Subsolver to use for solving the least squares problem.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.LstsqL1(weights=False, l1=0.0001, l2=1e-06, max_iter=1000)[source]¶
	Least-squares solver with L1 and L2 regularization (elastic net).

This method is well suited for creating sparse decoders or weight matrices.

Note

Requires scikit-learn.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	l1float, optional
	Amount of L1 regularization.

	l2float, optional
	Amount of L2 regularization.

	max_iterint, optional
	Maximum number of iterations for the underlying elastic net.

	Attributes
		l1float
	Amount of L1 regularization.

	l2float
	Amount of L2 regularization.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	max_iterint
	Maximum number of iterations for the underlying elastic net.

	
class nengo.solvers.LstsqDrop(weights=False, drop=0.25, solver1=LstsqL2(reg=0.001), solver2=LstsqL2())[source]¶
	Find sparser decoders/weights by dropping small values.

This solver first solves for coefficients (decoders/weights) with
L2 regularization, drops those nearest to zero, and retrains remaining.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	dropfloat, optional
	Fraction of decoders or weights to set to zero.

	solver1Solver, optional
	Solver for finding the initial decoders.

	solver2Solver, optional
	Used for re-solving for the decoders after dropout.

	Attributes
		dropfloat
	Fraction of decoders or weights to set to zero.

	solver1Solver
	Solver for finding the initial decoders.

	solver2Solver
	Used for re-solving for the decoders after dropout.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.Nnls(weights=False)[source]¶
	Non-negative least-squares solver without regularization.

Similar to Lstsq, except the output values are non-negative.

If solving for non-negative weights, it is important that the
intercepts of the post-population are also non-negative, since neurons with
negative intercepts will never be silent, affecting output accuracy.

Note

Requires
SciPy.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	Attributes
		weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.NnlsL2(weights=False, reg=0.1)[source]¶
	Non-negative least-squares solver with L2 regularization.

Similar to LstsqL2, except the output values are non-negative.

If solving for non-negative weights, it is important that the
intercepts of the post-population are also non-negative, since neurons with
negative intercepts will never be silent, affecting output accuracy.

Note

Requires
SciPy.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	regfloat, optional
	Amount of regularization, as a fraction of the neuron activity.

	Attributes
		regfloat
	Amount of regularization, as a fraction of the neuron activity.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.NnlsL2nz(weights=False, reg=0.1)[source]¶
	Non-negative least-squares with L2 regularization on nonzero components.

Similar to LstsqL2nz, except the output values are non-negative.

If solving for non-negative weights, it is important that the
intercepts of the post-population are also non-negative, since neurons with
negative intercepts will never be silent, affecting output accuracy.

Note

Requires
SciPy.

	Parameters
		weightsbool, optional
	If False, solve for decoders. If True, solve for weights.

	regfloat, optional
	Amount of regularization, as a fraction of the neuron activity.

	Attributes
		regfloat
	Amount of regularization, as a fraction of the neuron activity.

	weightsbool
	If False, solve for decoders. If True, solve for weights.

	
class nengo.solvers.NoSolver(values=None, weights=False)[source]¶
	Manually pass in weights, bypassing the decoder solver.

	Parameters
		values(n_neurons, size_out) array_like, optional
	The array of decoders to use.
size_out is the dimensionality of the decoded signal (determined
by the connection function).
If None, which is the default, the solver will return an
appropriately sized array of zeros.

	weightsbool, optional
	If False, connection will use factored weights (decoders from this
solver, transform, and encoders).
If True, connection will use a full weight matrix (created by
linearly combining decoder, transform, and encoders).

	Attributes
		values(n_neurons, size_out) array_like, optional
	The array of decoders to use.
size_out is the dimensionality of the decoded signal (determined
by the connection function).
If None, which is the default, the solver will return an
appropriately sized array of zeros.

	weightsbool, optional
	If False, connection will use factored weights (decoders from this
solver, transform, and encoders).
If True, connection will use a full weight matrix (created by
linearly combining decoder, transform, and encoders).

Solver methods¶

These solvers are to be passed as arguments to Solver objects.

For example:

from nengo.solvers import LstsqL2
from nengo.utils.least_squares_solvers import SVD

with nengo.Network():
 ens_a = nengo.Ensemble(10, 1)
 ens_b = nengo.Ensemble(10, 1)
 nengo.Connection(ens_a, ens_b, solver=LstsqL2(solver=SVD()))

	nengo.utils.least_squares_solvers.format_system
	Extract data from A/Y matrices.

	nengo.utils.least_squares_solvers.rmses
	Returns the root-mean-squared error (RMSE) of the solution X.

	nengo.utils.least_squares_solvers.LeastSquaresSolver
	Linear least squares system solver.

	nengo.utils.least_squares_solvers.Cholesky
	Solve a least-squares system using the Cholesky decomposition.

	nengo.utils.least_squares_solvers.ConjgradScipy
	Solve a least-squares system using Scipy’s conjugate gradient.

	nengo.utils.least_squares_solvers.LSMRScipy
	Solve a least-squares system using Scipy’s LSMR.

	nengo.utils.least_squares_solvers.Conjgrad
	Solve a least-squares system using conjugate gradient.

	nengo.utils.least_squares_solvers.BlockConjgrad
	Solve a multiple-RHS least-squares system using block conj gradient.

	nengo.utils.least_squares_solvers.SVD
	Solve a least-squares system using full SVD.

	nengo.utils.least_squares_solvers.RandomizedSVD
	Solve a least-squares system using a randomized (partial) SVD.

	nengo.utils.least_squares_solvers.LeastSquaresSolverParam
	A parameter where the value is a LeastSquaresSolver.

	
nengo.utils.least_squares_solvers.format_system(A, Y)[source]¶
	Extract data from A/Y matrices.

	
nengo.utils.least_squares_solvers.rmses(A, X, Y)[source]¶
	Returns the root-mean-squared error (RMSE) of the solution X.

	
class nengo.utils.least_squares_solvers.LeastSquaresSolver[source]¶
	Linear least squares system solver.

	
class nengo.utils.least_squares_solvers.Cholesky(transpose=None)[source]¶
	Solve a least-squares system using the Cholesky decomposition.

	
class nengo.utils.least_squares_solvers.ConjgradScipy(tol=0.0001, atol=1e-08)[source]¶
	Solve a least-squares system using Scipy’s conjugate gradient.

	Parameters
		tolfloat
	Relative tolerance of the CG solver (see [1] for details).

	atolfloat
	Absolute tolerance of the CG solver (see [1] for details).

References

	1(1,2)
	scipy.sparse.linalg.cg documentation,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html

	
class nengo.utils.least_squares_solvers.LSMRScipy(tol=0.0001)[source]¶
	Solve a least-squares system using Scipy’s LSMR.

	
class nengo.utils.least_squares_solvers.Conjgrad(tol=0.01, maxiters=None, X0=None)[source]¶
	Solve a least-squares system using conjugate gradient.

	
class nengo.utils.least_squares_solvers.BlockConjgrad(tol=0.01, X0=None)[source]¶
	Solve a multiple-RHS least-squares system using block conj gradient.

	
class nengo.utils.least_squares_solvers.SVD[source]¶
	Solve a least-squares system using full SVD.

	
class nengo.utils.least_squares_solvers.RandomizedSVD(n_components=60, n_oversamples=10, n_iter=0)[source]¶
	Solve a least-squares system using a randomized (partial) SVD.

Useful for solving large matrices quickly, but non-optimally.

	Parameters
		n_componentsint, optional
	The number of SVD components to compute. A small survey of activity
matrices suggests that the first 60 components capture almost all
the variance.

	n_oversamplesint, optional
	The number of additional samples on the range of A.

	n_iterint, optional
	The number of power iterations to perform (can help with noisy data).

See also

	sklearn.utils.extmath.randomized_svd
	Function used by this class

	
class nengo.utils.least_squares_solvers.LeastSquaresSolverParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	A parameter where the value is a LeastSquaresSolver.

Synapse models¶

	nengo.synapses.Synapse
	Abstract base class for synapse models.

	nengo.LinearFilter
	General linear time-invariant (LTI) system synapse.

	nengo.Lowpass
	Standard first-order lowpass filter synapse.

	nengo.Alpha
	Alpha-function filter synapse.

	nengo.synapses.Triangle
	Triangular finite impulse response (FIR) synapse.

	
class nengo.synapses.Synapse(default_size_in=1, default_size_out=None, default_dt=0.001, seed=None)[source]¶
	Abstract base class for synapse models.

Conceptually, a synapse model emulates a biological synapse, taking in
input in the form of released neurotransmitter and opening ion channels
to allow more or less current to flow into the neuron.

In Nengo, the implementation of a synapse is as a specific case of a
Process in which the input and output shapes are the same.
The input is the current across the synapse, and the output is the current
that will be induced in the postsynaptic neuron.

Synapses also contain the Synapse.filt and Synapse.filtfilt methods,
which make it easy to use Nengo’s synapse models outside of Nengo
simulations.

	Parameters
		default_size_inint, optional
	The size_in used if not specified.

	default_size_outint
	The size_out used if not specified.
If None, will be the same as default_size_in.

	default_dtfloat
	The simulation timestep used if not specified.

	seedint, optional
	Random number seed. Ensures random factors will be the same each run.

	Attributes
		default_dtfloat
	The simulation timestep used if not specified.

	default_size_inint
	The size_in used if not specified.

	default_size_outint
	The size_out used if not specified.

	seedint, optional
	Random number seed. Ensures random factors will be the same each run.

	
make_state(shape_in, shape_out, dt, dtype=None, y0=None)[source]¶
	Get a dictionary of signals to represent the state of this process.

The builder uses this to allocate memory for the process state, so
that the state can be represented as part of the whole simulator state.

New in version 3.0.0.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	dtypenumpy.dtype
	The data type requested by the builder. If None, then this
function is free to choose the best type for the signals involved.

	Returns
		initial_state{string: numpy.ndarray}
	A dictionary mapping keys to arrays containing the initial state
values. The keys will be used to identify the signals in
Process.make_step.

	
filt(x, dt=None, axis=0, y0=0, copy=True, filtfilt=False)[source]¶
	Filter x with this synapse model.

	Parameters
		xarray_like
	The signal to filter.

	dtfloat, optional
	The timestep of the input signal.
If None, default_dt will be used.

	axisint, optional
	The axis along which to filter.

	y0array_like, optional
	The starting state of the filter output. Must be zero for
unstable linear systems.

	copybool, optional
	Whether to copy the input data, or simply work in-place.

	filtfiltbool, optional
	If True, runs the process forward then backward on the signal,
for zero-phase filtering (like Matlab’s filtfilt).

	
filtfilt(x, **kwargs)[source]¶
	Zero-phase filtering of x using this filter.

Equivalent to filt(x, filtfilt=True, **kwargs).

	
class nengo.LinearFilter(num, den, analog=True, method='zoh', **kwargs)[source]¶
	General linear time-invariant (LTI) system synapse.

This class can be used to implement any linear filter, given the
filter’s transfer function. [1]

	Parameters
		numarray_like
	Numerator coefficients of transfer function.

	denarray_like
	Denominator coefficients of transfer function.

	analogboolean, optional
	Whether the synapse coefficients are analog (i.e. continuous-time),
or discrete. Analog coefficients will be converted to discrete for
simulation using the simulator dt.

	methodstring
	The method to use for discretization (if analog is True). See
scipy.signal.cont2discrete for information about the options.

New in version 3.0.0.

References

	1
	https://en.wikipedia.org/wiki/Filter_%28signal_processing%29

	Attributes
		analogboolean
	Whether the synapse coefficients are analog (i.e. continuous-time),
or discrete. Analog coefficients will be converted to discrete for
simulation using the simulator dt.

	denndarray
	Denominator coefficients of transfer function.

	numndarray
	Numerator coefficients of transfer function.

	methodstring
	The method to use for discretization (if analog is True). See
scipy.signal.cont2discrete for information about the options.

	
combine(obj)[source]¶
	Combine in series with another LinearFilter.

	
evaluate(frequencies)[source]¶
	Evaluate the transfer function at the given frequencies.

Examples

Using the evaluate function to make a Bode plot:

import matplotlib.pyplot as plt

synapse = nengo.synapses.LinearFilter([1], [0.02, 1])
f = np.logspace(-1, 3, 100)
y = synapse.evaluate(f)
plt.subplot(211); plt.semilogx(f, 20*np.log10(np.abs(y)))
plt.xlabel('frequency [Hz]'); plt.ylabel('magnitude [dB]')
plt.subplot(212); plt.semilogx(f, np.angle(y))
plt.xlabel('frequency [Hz]'); plt.ylabel('phase [radians]')

	
make_state(shape_in, shape_out, dt, dtype=None, y0=0)[source]¶
	Get a dictionary of signals to represent the state of this process.

The builder uses this to allocate memory for the process state, so
that the state can be represented as part of the whole simulator state.

New in version 3.0.0.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	dtypenumpy.dtype
	The data type requested by the builder. If None, then this
function is free to choose the best type for the signals involved.

	Returns
		initial_state{string: numpy.ndarray}
	A dictionary mapping keys to arrays containing the initial state
values. The keys will be used to identify the signals in
Process.make_step.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Returns a Step instance that implements the linear filter.

	
class Step(A, B, C, D, X)[source]¶
	Abstract base class for LTI filtering step functions.

	
classmethod check(A, B, C, D, X)[source]¶
	

	
static leading_dot(a, b)[source]¶
	Dot along the first dimension of b.

	
class NoX(A, B, C, D, X)[source]¶
	Step for system with no state, only passthrough matrix (D).

	
classmethod check(A, B, C, D, X)[source]¶
	

	
class OneX(A, B, C, D, X)[source]¶
	Step for systems with one state element and no passthrough (D).

	
classmethod check(A, B, C, D, X)[source]¶
	

	
class OneXScalar(A, B, C, D, X)[source]¶
	Step for systems with one state element, no passthrough, and a size-1 input.

Using the builtin float math improves performance.

	
classmethod check(A, B, C, D, X)[source]¶
	

	
class NoD(A, B, C, D, X)[source]¶
	Step for systems with no passthrough matrix (D).

Implements:

x[t] = A x[t-1] + B u[t]
y[t] = C x[t]

Note how the input has been advanced one step as compared with the
General system below, to remove the unnecessary delay.

	
classmethod check(A, B, C, D, X)[source]¶
	

	
class General(A, B, C, D, X)[source]¶
	Step for any LTI system with at least one state element (X).

Implements:

x[t+1] = A x[t] + B u[t]
y[t] = C x[t] + D u[t]

Use NoX for systems with no state elements.

	
classmethod check(A, B, C, D, X)[source]¶
	

	
class nengo.Lowpass(tau, **kwargs)[source]¶
	Standard first-order lowpass filter synapse.

The impulse-response function is given by:

f(t) = (1 / tau) * exp(-t / tau)

	Parameters
		taufloat
	The time constant of the filter in seconds.

	Attributes
		taufloat
	The time constant of the filter in seconds.

	
class nengo.Alpha(tau, **kwargs)[source]¶
	Alpha-function filter synapse.

The impulse-response function is given by:

alpha(t) = (t / tau**2) * exp(-t / tau)

and was found by [1] to be a good basic model for synapses.

	Parameters
		taufloat
	The time constant of the filter in seconds.

References

	1
	Mainen, Z.F. and Sejnowski, T.J. (1995). Reliability of spike timing
in neocortical neurons. Science (New York, NY), 268(5216):1503-6.

	Attributes
		taufloat
	The time constant of the filter in seconds.

	
class nengo.synapses.Triangle(t, **kwargs)[source]¶
	Triangular finite impulse response (FIR) synapse.

This synapse has a triangular and finite impulse response. The length of
the triangle is t seconds; thus the digital filter will have
t / dt + 1 taps.

	Parameters
		tfloat
	Length of the triangle, in seconds.

	Attributes
		tfloat
	Length of the triangle, in seconds.

	
make_state(shape_in, shape_out, dt, dtype=None, y0=0)[source]¶
	Get a dictionary of signals to represent the state of this process.

The builder uses this to allocate memory for the process state, so
that the state can be represented as part of the whole simulator state.

New in version 3.0.0.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	dtypenumpy.dtype
	The data type requested by the builder. If None, then this
function is free to choose the best type for the signals involved.

	Returns
		initial_state{string: numpy.ndarray}
	A dictionary mapping keys to arrays containing the initial state
values. The keys will be used to identify the signals in
Process.make_step.

	
make_step(shape_in, shape_out, dt, rng, state)[source]¶
	Create function that advances the process forward one time step.

This must be implemented by all custom processes. The parameters below
indicate what information is provided by the builder.

	Parameters
		shape_intuple
	The shape of the input signal.

	shape_outtuple
	The shape of the output signal.

	dtfloat
	The simulation timestep.

	rngnumpy.random.RandomState
	A random number generator.

	state{string: numpy.ndarray}
	A dictionary mapping keys to signals, where the signals fully
represent the state of the process. The signals are initialized
by Process.make_state.

New in version 3.0.0.

	
class nengo.synapses.SynapseParam(name, default=Unconfigurable, optional=True, readonly=None)[source]¶
	

Transforms¶

	nengo.transforms.Transform
	A base class for connection transforms.

	nengo.Dense
	A dense matrix transformation between an input and output signal.

	nengo.transforms.SparseMatrix
	Represents a sparse matrix.

	nengo.Sparse
	A sparse matrix transformation between an input and output signal.

	nengo.Convolution
	An N-dimensional convolutional transform.

	nengo.ConvolutionTranspose
	An N-dimensional transposed convolutional transform.

	nengo.transforms.ChannelShape
	Represents shape information with variable channel position.

	nengo.transforms.NoTransform
	Directly pass the signal through without any transform operations.

	nengo.Conv
	alias of nengo.Convolution

	nengo.ConvTranspose
	alias of nengo.ConvolutionTranspose

	
class nengo.transforms.Transform[source]¶
	A base class for connection transforms.

New in version 3.0.0.

	
sample(self, rng=numpy.random)[source]¶
	Returns concrete weights to implement the specified transform.

	Parameters
		rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		array_like
	Transform weights

	
property size_in¶
	Expected size of input to transform.

	
property size_out¶
	Expected size of output from transform.

	
class nengo.transforms.ChannelShapeParam(name, default=Unconfigurable, length=None, low=0, optional=False, readonly=None)[source]¶
	A parameter where the value must be a shape with channels.

New in version 3.0.0.

	
class nengo.Dense(shape, init=1.0)[source]¶
	A dense matrix transformation between an input and output signal.

New in version 3.0.0.

	Parameters
		shapetuple of int
	The shape of the dense matrix: (size_out, size_in).

	initDistribution or array_like, optional
	A Distribution used to initialize the transform matrix, or a concrete
instantiation for the matrix. If the matrix is square we also allow a
scalar (equivalent to np.eye(n) * init) or a vector (equivalent to
np.diag(init)) to represent the matrix more compactly.

	
sample(self, rng=numpy.random)[source]¶
	Returns concrete weights to implement the specified transform.

	Parameters
		rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		array_like
	Transform weights

	
property init_shape¶
	The shape of the initial value.

	
property size_in¶
	Expected size of input to transform.

	
property size_out¶
	Expected size of output from transform.

	
class nengo.transforms.SparseInitParam(name, default=Unconfigurable, optional=False, readonly=None)[source]¶
	

	
class nengo.transforms.SparseMatrix(indices, data, shape)[source]¶
	Represents a sparse matrix.

New in version 3.0.0.

	Parameters
		indicesarray_like of int
	An Nx2 array of integers indicating the (row,col) coordinates for the
N non-zero elements in the matrix.

	dataarray_like or Distribution
	An Nx1 array defining the value of the nonzero elements in the matrix
(corresponding to indices), or a Distribution that will be
used to initialize the nonzero elements.

	shapetuple of int
	Shape of the full matrix.

	
allocate()[source]¶
	Return a scipy.sparse.csr_matrix or dense matrix equivalent.

We mark this data as readonly to be consistent with how other data
associated with signals are allocated. If this allocated data is to be
modified, it should be copied first.

	
sample(self, rng=numpy.random)[source]¶
	Convert Distribution data to fixed array.

	Parameters
		rngnumpy.random.RandomState
	Random number generator that will be used when
sampling distribution.

	Returns
		matrixSparseMatrix
	A new SparseMatrix instance with Distribution converted to
array if self.data is a Distribution, otherwise simply
returns self.

	
toarray()[source]¶
	Return the dense matrix equivalent of this matrix.

	
class nengo.Sparse(shape, indices=None, init=1.0)[source]¶
	A sparse matrix transformation between an input and output signal.

New in version 3.0.0.

	Parameters
		shapetuple of int
	The full shape of the sparse matrix: (size_out, size_in).

	indicesarray_like of int
	An Nx2 array of integers indicating the (row,col) coordinates for the
N non-zero elements in the matrix.

	initDistribution or array_like, optional
	A Distribution used to initialize the transform matrix, or a concrete
instantiation for the matrix. If the matrix is square we also allow a
scalar (equivalent to np.eye(n) * init) or a vector (equivalent to
np.diag(init)) to represent the matrix more compactly.

	
sample(self, rng=numpy.random)[source]¶
	Returns concrete weights to implement the specified transform.

	Parameters
		rngnumpy.random.RandomState, optional
	Random number generator state.

	Returns
		array_like
	Transform weights

	
property size_in¶
	Expected size of input to transform.

	
property size_out¶
	Expected size of output from transform.

	
class nengo.Convolution(n_filters, input_shape, kernel_size=(3, 3), strides=(1, 1), padding='valid', channels_last=True, init=Uniform(low=- 1, high=1), groups=1)[source]¶
	An N-dimensional convolutional transform.

The dimensionality of the convolution is determined by the input shape.

New in version 3.0.0.

	Parameters
		n_filtersint
	The number of convolutional filters to apply.

	input_shapetuple of int or ChannelShape
	Shape of the input signal to the convolution; e.g.,
(height, width, channels) for a 2D convolution with channels_last=True.

	kernel_sizetuple of int, optional
	Size of the convolutional kernels (1 element for a 1D convolution,
2 for a 2D convolution, etc.).

	stridestuple of int, optional
	Stride of the convolution (1 element for a 1D convolution, 2 for
a 2D convolution, etc.).

	padding"same" or "valid", optional
	Padding method for input signal. “Valid” means no padding, and
convolution will only be applied to the fully-overlapping areas of the
input signal (meaning the output will be smaller). “Same” means that
the input signal is zero-padded so that the output is the same shape
as the input.

	channels_lastbool, optional
	If True (default), the channels are the last dimension in the input
signal (e.g., a 28x28 image with 3 channels would have shape
(28, 28, 3)). False means that channels are the first
dimension (e.g., (3, 28, 28)).

	initDistribution or ndarray, optional
	A predefined kernel with shape kernel_size + (input_channels, n_filters),
or a Distribution that will be used to initialize the kernel.

	groupsint, optional
	The number of groups in which to split the input/output channels for mixing.
Output channels only depend on input channels within the same group; the number
of each of these channels must be divisible by groups. For depthwise
convolution, use groups == input_shape.n_channels == n_filters.

Notes

As is typical in neural networks, this is technically correlation rather
than convolution (because the kernel is not flipped).

	
property output_shape¶
	Output shape after applying convolution to input.

	
class nengo.ConvolutionTranspose(n_filters, input_shape, output_shape=None, kernel_size=(3, 3), strides=(1, 1), padding='valid', channels_last=True, init=Uniform(low=- 1, high=1))[source]¶
	An N-dimensional transposed convolutional transform.

This performs the transpose operation of Convolution. The kernel_size,
strides, and padding parameters all act as in Convolution, so this
transform will be the transpose of a Convolution transform with those
parameters. The n_filters and input_shape parameters are relative to this
transform. The output shape is ambiguous, and can thus be specified (i.e. with
Convolution, there can be more than one input shape that produces the same output
shape, so here, there are multiple valid output shapes for some input shapes).

The dimensionality of the transpose convolution is determined by the input shape.

New in version 3.2.0.

	Parameters
		n_filtersint
	The number of channels in the output of this transform.

	input_shapetuple of int or ChannelShape
	Shape of the input signal to this transform; e.g.,
(height, width, channels) for a 2D convolution with channels_last=True.

	output_shapetuple of int or ChannelShape, optional
	Shape of the output signal of this transform; e.g.,
(output_height, output_width, n_filters) for a 2D convolution with
channels_last=True. Defaults to the smallest valid output shape.

	kernel_sizetuple of int, optional
	Size of the convolutional kernels (1 element for a 1D convolution,
2 for a 2D convolution, etc.).

	stridestuple of int, optional
	Stride of the convolution (1 element for a 1D convolution, 2 for
a 2D convolution, etc.).

	padding"same" or "valid", optional
	Padding method for corresponding Convolution.

	channels_lastbool, optional
	If True (default), the channels are the last dimension in the input
signal (e.g., a 28x28 image with 3 channels would have shape
(28, 28, 3)). False means that channels are the first
dimension (e.g., (3, 28, 28)).

	initDistribution or ndarray, optional
	A predefined kernel with shape kernel_size + (input_channels, n_filters),
or a Distribution that will be used to initialize the kernel.

Notes

As is typical in neural networks, this is technically correlation rather
than convolution (because the kernel is not flipped).

	
class nengo.transforms.ChannelShape(shape, channels_last=True)[source]¶
	Represents shape information with variable channel position.

New in version 3.0.0.

	Parameters
		shapeiterable of int
	Signal shape

	channels_lastbool, optional
	If True (default), the last item in shape represents the channels,
and the rest are spatial dimensions. Otherwise, the first item in
shape is the channel dimension.

	
classmethod from_space_and_channels(spatial_shape, n_channels, channels_last=True)[source]¶
	Create a ChannelShape from a spatial shape and number of channels.

New in version 3.2.0.

	Parameters
		spatial_shapeiterable of int
	The spatial part of the shape (not including channels).

	n_channelsint
	The number of channels.

	channels_lastbool, optional
	If True (default), the last item in shape represents the channels,
and the rest are spatial dimensions. Otherwise, the first item in
shape is the channel dimension.

	
property spatial_shape¶
	The spatial part of the shape (omitting channels).

	
property size¶
	The total number of elements in the represented signal.

	
property n_channels¶
	The number of channels in the represented signal.

	
property dimensions¶
	The spatial dimensionality of the represented signal.

	
class nengo.transforms.NoTransform(size_in)[source]¶
	Directly pass the signal through without any transform operations.

New in version 3.1.0.

	Parameters
		size_inint
	Dimensionality of transform input and output.

	
sample(self, rng=numpy.random)[source]¶
	Returns concrete weights to implement the specified transform.

	Parameters
		rngnumpy.random.RandomState, optional
	Random number generator state.

	Raises
		TypeError
	There is nothing to sample for NoTransform, so it is an error
if this is called.

	
property size_in¶
	Expected size of input to transform.

	
property size_out¶
	Expected size of output from transform.

	
nengo.Conv[source]¶
	alias of nengo.Convolution

	
nengo.ConvTranspose[source]¶
	alias of nengo.ConvolutionTranspose

 What is Nengo?
 Examples
 Documentation
 Getting started
 Privacy

 © Applied Brain Research

