Source code for nengo.networks.actionselection

import warnings

import numpy as np

import nengo
from nengo.dists import Choice, Uniform
from nengo.networks.ensemblearray import EnsembleArray
from nengo.solvers import NnlsL2nz


# connection weights from (Gurney, Prescott, & Redgrave, 2001)
class Weights(object):
    mm = 1
    mp = 1
    me = 1
    mg = 1
    ws = 1
    wt = 1
    wm = 1
    wg = 1
    wp = 0.9
    we = 0.3
    e = 0.2
    ep = -0.25
    ee = -0.2
    eg = -0.2
    le = 0.2
    lg = 0.2

    @classmethod
    def str_func(cls, x):
        if x < cls.e:
            return 0
        return cls.mm * (x - cls.e)

    @classmethod
    def stn_func(cls, x):
        if x < cls.ep:
            return 0
        return cls.mp * (x - cls.ep)

    @classmethod
    def gpe_func(cls, x):
        if x < cls.ee:
            return 0
        return cls.me * (x - cls.ee)

    @classmethod
    def gpi_func(cls, x):
        if x < cls.eg:
            return 0
        return cls.mg * (x - cls.eg)


def config_with_default_synapse(config, synapse):
    if config is None:
        config = nengo.Config(nengo.Connection)
        config[nengo.Connection].synapse = synapse
    override = 'synapse' not in config[nengo.Connection]
    if override:
        config[nengo.Connection].synapse = synapse
    return config, override


[docs]def BasalGanglia(dimensions, n_neurons_per_ensemble=100, output_weight=-3., input_bias=0., ampa_config=None, gaba_config=None, net=None): """Winner take all network, typically used for action selection. The basal ganglia network outputs approximately 0 at the dimension with the largest value, and is negative elsewhere. While the basal ganglia is primarily defined by its winner-take-all function, it is also organized to match the organization of the human basal ganglia. It consists of five ensembles: * Striatal D1 dopamine-receptor neurons (``strD1``) * Striatal D2 dopamine-receptor neurons (``strD2``) * Subthalamic nucleus (``stn``) * Globus pallidus internus / substantia nigra reticulata (``gpi``) * Globus pallidus externus (``gpe``) Interconnections between these areas are also based on known neuroanatomical connections. See [1]_ for more details, and [2]_ for the original non-spiking basal ganglia model by Gurney, Prescott & Redgrave that this model is based on. .. note:: The default `.Solver` for the basal ganglia is `.NnlsL2nz`, which requires SciPy. If SciPy is not installed, the global default solver will be used instead. Parameters ---------- dimensions : int Number of dimensions (i.e., actions). n_neurons_per_ensemble : int, optional (Default: 100) Number of neurons in each ensemble in the network. output_weight : float, optional (Default: -3.) A scaling factor on the output of the basal ganglia (specifically on the connection out of the GPi). input_bias : float, optional (Default: 0.) An amount by which to bias all dimensions of the input node. Biasing the input node is important for ensuring that all input dimensions are positive and easily comparable. ampa_config : config, optional (Default: None) Configuration for connections corresponding to biological connections to AMPA receptors (i.e., connections from STN to to GPi and GPe). If None, a default configuration using a 2 ms lowpass synapse will be used. gaba_config : config, optional (Default: None) Configuration for connections corresponding to biological connections to GABA receptors (i.e., connections from StrD1 to GPi, StrD2 to GPe, and GPe to GPi and STN). If None, a default configuration using an 8 ms lowpass synapse will be used. net : Network, optional (Default: None) A network in which the network components will be built. This is typically used to provide a custom set of Nengo object defaults through modifying ``net.config``. Returns ------- net : Network The newly built basal ganglia network, or the provided ``net``. Attributes ---------- net.bias_input : Node or None If ``input_bias`` is non-zero, this node will be created to bias all of the dimensions of the input signal. net.gpe : EnsembleArray Globus pallidus externus ensembles. net.gpi : EnsembleArray Globus pallidus internus ensembles. net.input : Node Accepts the input signal. net.output : Node Provides the output signal. net.stn : EnsembleArray Subthalamic nucleus ensembles. net.strD1 : EnsembleArray Striatal D1 ensembles. net.strD2 : EnsembleArray Striatal D2 ensembles. References ---------- .. [1] Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic behaviour of a spiking model of action selection in the basal ganglia. In Proceedings of the 10th international conference on cognitive modeling (pp. 235-40). .. [2] Gurney, K., Prescott, T., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia. Biological Cybernetics 84, 401-423. """ if net is None: net = nengo.Network("Basal Ganglia") ampa_config, override_ampa = config_with_default_synapse( ampa_config, nengo.Lowpass(0.002)) gaba_config, override_gaba = config_with_default_synapse( gaba_config, nengo.Lowpass(0.008)) # Affects all ensembles / connections in the BG # unless they've been overridden on `net.config` config = nengo.Config(nengo.Ensemble, nengo.Connection) config[nengo.Ensemble].radius = 1.5 config[nengo.Ensemble].encoders = Choice([[1]]) try: # Best, if we have SciPy config[nengo.Connection].solver = NnlsL2nz() except ImportError: # Warn if we can't use the better decoder solver. warnings.warn("SciPy is not installed, so BasalGanglia will " "use the default decoder solver. Installing SciPy " "may improve BasalGanglia performance.") ea_params = {'n_neurons': n_neurons_per_ensemble, 'n_ensembles': dimensions} with config, net: net.strD1 = EnsembleArray(label="Striatal D1 neurons", intercepts=Uniform(Weights.e, 1), **ea_params) net.strD2 = EnsembleArray(label="Striatal D2 neurons", intercepts=Uniform(Weights.e, 1), **ea_params) net.stn = EnsembleArray(label="Subthalamic nucleus", intercepts=Uniform(Weights.ep, 1), **ea_params) net.gpi = EnsembleArray(label="Globus pallidus internus", intercepts=Uniform(Weights.eg, 1), **ea_params) net.gpe = EnsembleArray(label="Globus pallidus externus", intercepts=Uniform(Weights.ee, 1), **ea_params) net.input = nengo.Node(label="input", size_in=dimensions) net.output = nengo.Node(label="output", size_in=dimensions) # add bias input (BG performs best in the range 0.5--1.5) if abs(input_bias) > 0.0: net.bias_input = nengo.Node(np.ones(dimensions) * input_bias, label="basal ganglia bias") nengo.Connection(net.bias_input, net.input) # spread the input to StrD1, StrD2, and STN nengo.Connection(net.input, net.strD1.input, synapse=None, transform=Weights.ws * (1 + Weights.lg)) nengo.Connection(net.input, net.strD2.input, synapse=None, transform=Weights.ws * (1 - Weights.le)) nengo.Connection(net.input, net.stn.input, synapse=None, transform=Weights.wt) # connect the striatum to the GPi and GPe (inhibitory) strD1_output = net.strD1.add_output('func_str', Weights.str_func) strD2_output = net.strD2.add_output('func_str', Weights.str_func) with gaba_config: nengo.Connection(strD1_output, net.gpi.input, transform=-Weights.wm) nengo.Connection(strD2_output, net.gpe.input, transform=-Weights.wm) # connect the STN to GPi and GPe (broad and excitatory) tr = Weights.wp * np.ones((dimensions, dimensions)) stn_output = net.stn.add_output('func_stn', Weights.stn_func) with ampa_config: nengo.Connection(stn_output, net.gpi.input, transform=tr) nengo.Connection(stn_output, net.gpe.input, transform=tr) # connect the GPe to GPi and STN (inhibitory) gpe_output = net.gpe.add_output('func_gpe', Weights.gpe_func) with gaba_config: nengo.Connection(gpe_output, net.gpi.input, transform=-Weights.we) nengo.Connection(gpe_output, net.stn.input, transform=-Weights.wg) # connect GPi to output (inhibitory) gpi_output = net.gpi.add_output('func_gpi', Weights.gpi_func) nengo.Connection(gpi_output, net.output, synapse=None, transform=output_weight) # Return ampa_config and gaba_config to previous states, if changed if override_ampa: del ampa_config[nengo.Connection].synapse if override_gaba: del gaba_config[nengo.Connection].synapse return net
[docs]def Thalamus(dimensions, n_neurons_per_ensemble=50, mutual_inhib=1., threshold=0., net=None): """Inhibits non-selected actions. The thalamus is intended to work in tandem with a basal ganglia network. It converts basal ganglia output into a signal with (approximately) 1 for the selected action and 0 elsewhere. In order to suppress low responses and strengthen high responses, a constant bias is added to each dimension (i.e., action), and dimensions mutually inhibit each other. Additionally, the ensemble representing each dimension is created with positive encoders and can be assigned positive x-intercepts to threshold low responses. Parameters ---------- dimensions : int Number of dimensions (i.e., actions). n_neurons_per_ensemble : int, optional (Default: 50) Number of neurons in each ensemble in the network. mutual_inhib : float, optional (Default: 1.) Strength of the mutual inhibition between actions. threshold : float, optional (Default: 0.) The threshold below which values will not be represented. net : Network, optional (Default: None) A network in which the network components will be built. This is typically used to provide a custom set of Nengo object defaults through modifying ``net.config``. Returns ------- net : Network The newly built thalamus network, or the provided ``net``. Attributes ---------- net.actions : EnsembleArray Each ensemble represents one dimension (action). net.bias : Node The constant bias injected in each ``actions`` ensemble. net.input : Node Input to the ``actions`` ensembles. net.output : Node Output from the ``actions`` ensembles. """ if net is None: net = nengo.Network("Thalamus") with net: net.actions = EnsembleArray(n_neurons_per_ensemble, dimensions, intercepts=Uniform(threshold, 1), encoders=Choice([[1.0]]), label="actions") nengo.Connection(net.actions.output, net.actions.input, transform=(np.eye(dimensions) - 1) * mutual_inhib) net.bias = nengo.Node([1], label="thalamus bias") nengo.Connection(net.bias, net.actions.input, transform=np.ones((dimensions, 1))) net.input = net.actions.input net.output = net.actions.output return net