Additional tips and tricks for designing networks

This tutorial assumes that you have read the network_design tutorial, and have designed a network or two. Here, we will give a few advanced tips and tricks for designing networks that can be reused flexibly. In particular, these tips will use the config system, so we will also assume that you have gone over the config tutorial.

Briefly, the general principles covered in this tutorial are

  1. Accept a network argument
  2. Accept a config argument for groups of parameters

We will demonstrate these principles using the two examples from the network_design tutorial.

In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import nengo
from nengo.dists import Choice
from nengo.processes import Piecewise
from nengo.utils.ipython import hide_input


def test_integrators(net):
    with net:
        piecewise = Piecewise({
            0: 0,
            0.2: 0.5,
            1: 0,
            2: -1,
            3: 0,
            4: 1,
            5: 0
        })
        piecewise_inp = nengo.Node(piecewise)
        nengo.Connection(piecewise_inp, net.pre_integrator.input)
        input_probe = nengo.Probe(piecewise_inp)
        pre_probe = nengo.Probe(net.pre_integrator.ensemble, synapse=0.01)
        post_probe = nengo.Probe(net.post_integrator.ensemble, synapse=0.01)
    with nengo.Simulator(net) as sim:
        sim.run(6)
    plt.figure()
    plt.plot(sim.trange(), sim.data[input_probe], color='k')
    plt.plot(sim.trange(), sim.data[pre_probe], color='b')
    plt.plot(sim.trange(), sim.data[post_probe], color='g')


hide_input()
Out[1]:
Show Input

1. Accept a network argument

Typically, a network-creation function will take a set of arguments, which affect some important parts of the network. When testing the network, it’s common to change several parameters to see how they affect the network. One way to do this is to add more and more arguments to your function; this quickly gets out of hand. Instead, use the config system, which enables us to set network-level defaults for all Nengo objects.

You can either do this by creating your network in the context of some other network, or you can modify your function to optionally take in a network instance, which you will build your objects into.

In the example below, we change both integrators to use LIFRate neurons by changing the config object in the network both integrators are build within. We also change the post_integrator to use a very small radius by passing in a network which has its default radius modified.

In [2]:
def Integrator(n_neurons, dimensions, tau=0.1, net=None):
    if net is None:
        net = nengo.Network()
    with net:
        net.input = nengo.Node(size_in=dimensions)
        net.ensemble = nengo.Ensemble(n_neurons, dimensions=dimensions)
        nengo.Connection(net.ensemble, net.ensemble, synapse=tau)
        nengo.Connection(net.input, net.ensemble, synapse=None, transform=tau)
    return net


net = nengo.Network(label="Two integrators")
with net:
    # Make both integrators use LIFRate neurons
    net.config[nengo.Ensemble].neuron_type = nengo.LIFRate()
    net.pre_integrator = Integrator(50, 1)
    # Lower the radius of the post_integrator
    net.post_integrator = nengo.Network()
    net.post_integrator.config[nengo.Ensemble].radius = 0.2
    Integrator(50, 1, net=net.post_integrator)
    nengo.Connection(net.pre_integrator.ensemble, net.post_integrator.input)
test_integrators(net)
../../_images/examples_usage_network_design_advanced_3_0.png

2. Accept a config argument for groups of parameters

Often, you will not want to use the network-level defaults for all of your objects. Some objects need certain things overwritten, while others need other values overwritten. Again, it is possible to deal with this issue by adding more and more parameters, but this quickly gets out of hand. Instead, add a small number of arguments that optionally accept a config object, which allows for setting multiple parameters at once.

In the coupled integrator network example, we make two connections. We have to be careful changing the defaults for those connections, as they are wildly different; one is a recurrent connection from an ensemble to itself, while the other is a connection from a node to an ensemble. We will accept a config object for the recurrent connection to make this easier.

In [3]:
def Integrator(n_neurons, dimensions, recurrent_config=None, net=None):
    if net is None:
        net = nengo.Network()
    if recurrent_config is None:
        recurrent_config = nengo.Config(nengo.Connection)
        recurrent_config[nengo.Connection].synapse = nengo.Lowpass(0.1)
    with net:
        net.input = nengo.Node(size_in=dimensions)
        net.ensemble = nengo.Ensemble(n_neurons, dimensions=dimensions)
        with recurrent_config:
            nengo.Connection(net.ensemble, net.ensemble)
            tau = nengo.Config.default(nengo.Connection, 'synapse').tau
        nengo.Connection(net.input, net.ensemble, synapse=None, transform=tau)
    return net


net = nengo.Network(label="Two integrators")
with net:
    # Make both integrators use LIFRate neurons
    net.config[nengo.Ensemble].neuron_type = nengo.LIFRate()
    net.pre_integrator = Integrator(50, 1)
    # Give the post_integrator a shorter tau (should make integration fail)
    recurrent_config = nengo.Config(nengo.Connection)
    recurrent_config[nengo.Connection].synapse = nengo.Lowpass(0.01)
    net.post_integrator = Integrator(50, 1, recurrent_config=recurrent_config)
    nengo.Connection(net.pre_integrator.ensemble, net.post_integrator.input)
test_integrators(net)
../../_images/examples_usage_network_design_advanced_5_0.png

Longer example: double integrator network

Recall in the previous tutorial that we created a model that released a lever 0.6 to 1.0 seconds after pressing a lever. Let’s use the above principles, and the config system in general, to improve the code constructing this model.

In [4]:
def controlled_integrator(n_neurons,
                          dimensions,
                          recurrent_config=None,
                          net=None):
    if net is None:
        net = nengo.Network()
    if recurrent_config is None:
        recurrent_config = nengo.Config(nengo.Connection)
        recurrent_config[nengo.Connection].synapse = nengo.Lowpass(0.1)
    with net:
        net.ensemble = nengo.Ensemble(n_neurons, dimensions=dimensions + 1)
        with recurrent_config:
            nengo.Connection(
                net.ensemble,
                net.ensemble[:dimensions],
                function=lambda x: x[:-1] * (1.0 - x[-1]))
    return net


def medial_pfc(coupling_strength,
               n_neurons_per_integrator=200,
               recurrent_config=None,
               tau=0.1,
               net=None):
    if net is None:
        net = nengo.Network()
    with net:
        recurrent_config = nengo.Config(nengo.Connection)
        recurrent_config[nengo.Connection].synapse = nengo.Lowpass(tau)
        net.pre = controlled_integrator(n_neurons_per_integrator, 1,
                                        recurrent_config)
        net.post = controlled_integrator(n_neurons_per_integrator, 1,
                                         recurrent_config)
        nengo.Connection(
            net.pre.ensemble[0],
            net.post.ensemble[0],
            transform=coupling_strength)
    return net


def motor_cortex(command_threshold,
                 n_neurons_per_command=30,
                 ens_config=None,
                 net=None):
    if net is None:
        net = nengo.Network()
    if ens_config is None:
        ens_config = nengo.Config(nengo.Ensemble)
        ens_config[nengo.Ensemble].encoders = Choice([[1]])
        ens_config[nengo.Ensemble].intercepts = Choice([command_threshold])
    with net:
        with ens_config:
            net.press = nengo.Ensemble(n_neurons_per_command, dimensions=1)
            net.release = nengo.Ensemble(n_neurons_per_command, dimensions=1)
    return net


def double_integrator(mpfc_coupling_strength,
                      command_threshold,
                      press_to_pre_gain=3,
                      press_to_post_control=-6,
                      recurrent_tau=0.1,
                      net=None):
    if net is None:
        net = nengo.Network()
    with net:
        net.mpfc = medial_pfc(mpfc_coupling_strength)
        net.motor = motor_cortex(command_threshold)
        nengo.Connection(
            net.motor.press,
            net.mpfc.pre.ensemble[0],
            transform=recurrent_tau * press_to_pre_gain)
        nengo.Connection(
            net.motor.press,
            net.mpfc.post.ensemble[1],
            transform=press_to_post_control)
        nengo.Connection(net.mpfc.post.ensemble[0], net.motor.release)
    return net


def test_doubleintegrator(net):
    # Provide input and probe outside of network construction,
    # for more flexibility
    with net:
        nengo.Connection(
            nengo.Node(lambda t: 1 if t < 0.2 else 0), net.motor.press)
        pr_press = nengo.Probe(net.motor.press, synapse=0.01)
        pr_release = nengo.Probe(net.motor.release, synapse=0.01)
        pr_pre_int = nengo.Probe(net.mpfc.pre.ensemble[0], synapse=0.01)
        pr_post_int = nengo.Probe(net.mpfc.post.ensemble[0], synapse=0.01)
    with nengo.Simulator(net) as sim:
        sim.run(1.4)
    t = sim.trange()
    plt.figure()
    plt.subplot(2, 1, 1)
    plt.plot(t, sim.data[pr_press], c='b', label="Press")
    plt.plot(t, sim.data[pr_release], c='g', label="Release")
    plt.axvspan(0, 0.2, color='b', alpha=0.3)
    plt.axvspan(0.8, 1.2, color='g', alpha=0.3)
    plt.xlim(right=1.4)
    plt.legend(loc="best")
    plt.subplot(2, 1, 2)
    plt.plot(t, sim.data[pr_pre_int], label="Pre Integrator")
    plt.plot(t, sim.data[pr_post_int], label="Post Integrator")
    plt.xlim(right=1.4)
    plt.legend(loc="best")


for coupling_strength in (0.11, 0.16, 0.21):
    net = nengo.Network(seed=0)  # Set seed here instead
    # Try the same network with LIFRate neurons
    net.config[nengo.Ensemble].neuron_type = nengo.LIFRate()
    net = double_integrator(
        mpfc_coupling_strength=coupling_strength,
        command_threshold=0.85,
        net=net)
    test_doubleintegrator(net)
../../_images/examples_usage_network_design_advanced_7_0.png
../../_images/examples_usage_network_design_advanced_7_1.png
../../_images/examples_usage_network_design_advanced_7_2.png