Source code for nengo_dl.tensor_graph

"""
Manages the data and build processes associated with implementing a Nengo simulation
in TensorFlow.
"""

from collections import OrderedDict, defaultdict
import logging
import warnings

from nengo import Connection, Process
from nengo.builder.neurons import SimNeurons
from nengo.builder.operator import Reset, SimPyFunc, TimeUpdate
from nengo.builder.processes import SimProcess
from nengo.config import ConfigError
from nengo.exceptions import BuildError
from nengo.neurons import Direct
from nengo.synapses import Lowpass
from nengo.transforms import SparseMatrix
import numpy as np
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.training.tracking import base as trackable

from nengo_dl import (
    builder,
    config,
    compat,
    graph_optimizer,
    tensor_node,
    signals,
    utils,
)

logger = logging.getLogger(__name__)


[docs]class TensorGraph(tf.keras.layers.Layer): """ Implement the Nengo simulation as a Keras Layer. Parameters ---------- model : `~nengo.builder.Model` Pre-built Nengo model describing the network to be simulated. dt : float Length of a simulator timestep, in seconds. unroll_simulation : int Unroll simulation loop by explicitly building ``unroll_simulation`` iterations into the computation graph. minibatch_size : int The number of simultaneous inputs that will be passed through the network. device : None or ``"/cpu:0"`` or ``"/gpu:[0-n]"`` Device on which to execute computations (if None then uses the default device as determined by TensorFlow). progress : `.utils.ProgressBar` Progress bar for optimization stage. seed : int Seed for random number generation. """ @trackable.no_automatic_dependency_tracking def __init__( self, model, dt, unroll_simulation, minibatch_size, device, progress, seed ): super().__init__( name="TensorGraph", dynamic=False, trainable=not config.get_setting(model, "inference_only", False), dtype=config.get_setting(model, "dtype", "float32"), batch_size=minibatch_size, ) self.model = model self.dt = dt self.unroll = unroll_simulation self.use_loop = config.get_setting(model, "use_loop", True) self.minibatch_size = minibatch_size self.device = device self.seed = seed self.inference_only = not self.trainable self.signals = signals.SignalDict(self.dtype, self.minibatch_size) # find invariant inputs (nodes that don't receive any input other # than the simulation time). we'll compute these outside the simulation # and feed in the result. if self.model.toplevel is None: self.invariant_inputs = OrderedDict() else: self.invariant_inputs = OrderedDict( (n, n.output) for n in self.model.toplevel.all_nodes if n.size_in == 0 and not isinstance(n, tensor_node.TensorNode) ) # remove input nodes because they are executed outside the simulation node_processes = [ n.output for n in self.invariant_inputs if isinstance(n.output, Process) ] operators = [ op for op in self.model.operators if not ( (isinstance(op, SimPyFunc) and op.x is None) or ( isinstance(op, SimProcess) and op.input is None and op.process in node_processes ) ) ] # mark trainable signals self.mark_signals() logger.info("Initial plan length: %d", len(operators)) # apply graph simplification functions simplifications = config.get_setting( model, "simplifications", graph_optimizer.default_simplifications, ) with progress.sub("operator simplificaton", max_value=None): old_operators = [] while len(old_operators) != len(operators) or any( x is not y for x, y in zip(operators, old_operators) ): old_operators = operators for simp in simplifications: operators = simp(operators) # group mergeable operators planner = config.get_setting(model, "planner", graph_optimizer.tree_planner) with progress.sub("merging operators", max_value=None): plan = planner(operators) # TODO: we could also merge operators sequentially (e.g., combine # a copy and dotinc into one op), as long as the intermediate signal # is only written to by one op and read by one op # order signals/operators to promote contiguous reads sorter = config.get_setting(model, "sorter", graph_optimizer.order_signals) with progress.sub("ordering signals", max_value=None): sigs, self.plan = sorter(plan, n_passes=10) # create base arrays and map Signals to TensorSignals (views on those # base arrays) with progress.sub("creating signals", max_value=None): self.create_signals(sigs) # generate unique names for layer inputs/outputs # this follows the TensorFlow unique naming scheme, so if multiple objects are # created with the same name, they will be named like name, NAME_1, name_2 # (note: case insensitive) self.io_names = {} name_count = defaultdict(int) for obj in list(self.invariant_inputs.keys()) + self.model.probes: name = ( type(obj).__name__.lower() if obj.label is None else utils.sanitize_name(obj.label) ) key = name.lower() if name_count[key] > 0: name += "_%d" % name_count[key] self.io_names[obj] = name name_count[key] += 1 # set up op builder self.op_builder = builder.Builder(self.plan) # logging logger.info("Optimized plan length: %d", len(self.plan)) logger.info( "Number of base arrays: (%s, %d), (%s, %d), (%s, %d)", *sum(((k, len(x)) for k, x in self.base_arrays_init.items()), ()), )
[docs] def build_inputs(self): """ Generates a set of Input layers that can be used as inputs to a TensorGraph layer. Returns ------- n_steps : ``tf.keras.layers.Input`` Input layer for specifying the number of simulation timesteps. inputs : dict of {`nengo.Node`: ``tf.keras.layers.Input``} Input layers for each of the Nodes in the network. """ # input placeholders inputs = OrderedDict() for n in self.invariant_inputs: inputs[n] = tf.keras.layers.Input( shape=(None, n.size_out), batch_size=self.minibatch_size, dtype=self.dtype, name=self.io_names[n], ) # number of steps to run n_steps = tf.keras.layers.Input( shape=(1,), batch_size=self.minibatch_size, dtype="int32", name="n_steps" ) return inputs, n_steps
[docs] def build(self, input_shape=None): """ Create any Variables used in the model. Parameters ---------- input_shape : list of tuple of int Shapes of all the inputs to this layer. """ super().build(input_shape) tf.random.set_seed(self.seed) def get_initializer(init_vals): """Use more efficient initializers if possible to save memory.""" values, shapes, dtype, minibatched = init_vals # initial value of None means that the initial value isn't used, so we # can use anything for the initial value if all(v is None for v in values): initializer = None elif all(v is None or np.all(v == 0) for v in values): initializer = tf.initializers.zeros() elif all(v is None or np.all(v == 1) for v in values): initializer = tf.initializers.ones() else: val = tf.concat( [ tf.zeros(s, dtype) if v is None else tf.cast(tf.broadcast_to(v, s), dtype) for v, s in zip(values, shapes) ], axis=1 if minibatched else 0, ) initializer = lambda shape=None, dtype=None: val # figure out shape of full concatenated initial value shape = list(shapes[0]) shape[minibatched] = sum(x[minibatched] for x in shapes) return initializer, tuple(shape), dtype # save initializers so that we can reset the model later with trackable.no_automatic_dependency_tracking_scope(self): self.initial_values = {} # variables for model parameters with trackable.no_automatic_dependency_tracking_scope(self): self.base_params = OrderedDict() assert len(self.base_params) == 0 for sig_type in ("trainable", "non_trainable"): for k, v in self.base_arrays_init[sig_type].items(): initializer, shape, dtype = get_initializer(v) assert initializer is not None # params should never be set self.base_params[k] = self.add_weight( initializer=initializer, shape=shape, dtype=dtype, trainable=sig_type == "trainable", name="base_params/%s_%s_%s" % (sig_type, dtype, "_".join(str(x) for x in shape)), ) self.initial_values[k] = initializer logger.debug("created base param variables") logger.debug([str(x) for x in self.base_params.values()]) # variables to save the internal state of simulation between runs with trackable.no_automatic_dependency_tracking_scope(self): self.saved_state = OrderedDict() for k, v in self.base_arrays_init["state"].items(): initializer, shape, dtype = get_initializer(v) if initializer is not None: # don't need to save the state for signals where the initial value # doesn't matter self.saved_state[k] = tf.Variable( initial_value=lambda: initializer(shape=shape, dtype=dtype), shape=shape, dtype=dtype, trainable=False, name="saved_state/%s_%s" % (dtype, "_".join(str(x) for x in shape)), ) self.initial_values[k] = initializer logger.debug("created saved state variables") logger.debug([str(x) for x in self.saved_state.values()]) # call build on any TensorNode Layers def unbuild(layer): assert layer.built # clear any losses attached to layer (they will be recreated in the # build step, so we don't want to keep around any losses # associated with the previous build) # note: not clearing layer._losses, because those are manually added # by the user (not created during the build process) layer._eager_losses = [] layer._callable_losses = [] layer.built = False for sub in layer._layers: if isinstance(sub, tf.keras.layers.Layer): unbuild(sub) layer_ops = [ op for ops in self.plan if isinstance(ops[0], tensor_node.SimTensorNode) for op in ops if isinstance(op.func, tf.keras.layers.Layer) ] weight_gets = [] weight_sets = [] for op in layer_ops: if op.func in self._layers: # already built this layer continue if op.time is None: shape_in = [] else: shape_in = [()] if op.input is not None: shape_in += [(self.minibatch_size,) + op.shape_in] if len(shape_in) == 1: shape_in = shape_in[0] if op.func.built: # we rebuild the layer (even if it is already built), # because we need to build the weights within the TensorGraph # context # save the weight values so they can be restored # exactly inside the tensornode weights = op.func.weights weight_gets.extend(weights) # clear the results of previous build unbuild(op.func) else: weights = None with tf.name_scope(op.func.name): op.func.build(shape_in) if weights is not None: weight_sets.extend(op.func.weights) # add op func to _layers so that any weights are collected self._layers.append(op.func) if len(weight_gets) > 0: # do all the weight getting/setting in one go, for efficiency reasons # match the fetch context to the context in which the weights were created ctx = ( weight_gets[0].graph.as_default() if hasattr(weight_gets[0], "graph") else context.eager_mode() ) with ctx: weight_vals = tf.keras.backend.batch_get_value(weight_gets) tf.keras.backend.batch_set_value(zip(weight_sets, weight_vals)) if not compat.eager_enabled(): # initialize state variables (need to do this manually because we're not # adding them to self.weights) tf.keras.backend.batch_get_value( [var.initializer for var in self.saved_state.values()] )
[docs] @tf.autograph.experimental.do_not_convert def call(self, inputs, training=None, progress=None, stateful=False): """ Constructs the graph elements to simulate the model. Parameters ---------- inputs : list of ``tf.Tensor`` Input layers/tensors for the network (must match the structure defined in `.build_inputs`). training : bool Whether the network is being run in training or inference mode. If None, uses the symbolic Keras learning phase variable. progress : `.utils.ProgressBar` Progress bar for construction stage. stateful : bool Whether or not to build the model to support preserving the internal state between executions. Returns ------- probe_arrays : list of ``tf.Tensor`` Tensors representing the output of all the Probes in the network (order corresponding to ``self.model.probes``, which is the order the Probes were instantiated). """ override_training = config.get_setting(self.model, "learning_phase", None) training = training if override_training is None else override_training super().call(inputs, training=training) if training is True and self.inference_only: raise BuildError( "TensorGraph was created with inference_only=True; cannot be called " "with training=%s" % training ) tf.random.set_seed(self.seed) if progress is None: progress = utils.NullProgressBar() # reset signaldict self.signals.reset() # create these constants once here for reuse in different operators self.signals.dt = tf.constant(self.dt, self.dtype) self.signals.dt_val = self.dt # store the actual value as well self.signals.zero = tf.constant(0, self.dtype) self.signals.one = tf.constant(1, self.dtype) # set up invariant inputs with trackable.no_automatic_dependency_tracking_scope(self): self.node_inputs = {} for n, inp in zip(self.invariant_inputs, inputs): # specify shape of inputs (keras sometimes loses this shape information) inp.set_shape([self.minibatch_size, inp.shape[1], n.size_out]) self.node_inputs[n] = inp self.steps_to_run = inputs[-1][0, 0] # set up build config # TODO: it would be nicer if buildconfig was static (i.e. find a separate # way to pass around `training`) build_config = builder.BuildConfig( inference_only=self.inference_only, lif_smoothing=config.get_setting(self.model, "lif_smoothing"), cpu_only=self.device == "/cpu:0" or not utils.tf_gpu_installed, rng=np.random.RandomState(self.seed), training=( tf.keras.backend.learning_phase() if training is None else training ), ) # pre-build stage with progress.sub("pre-build stage", max_value=len(self.plan)) as sub: self.op_builder.build_pre(self.signals, build_config, sub) # build stage with progress.sub("build stage", max_value=len(self.plan) * self.unroll) as sub: steps_run, probe_arrays, final_internal_state, final_base_params = ( self._build_loop(sub) if self.use_loop else self._build_no_loop(sub) ) # store these so that they can be accessed after the initial build with trackable.no_automatic_dependency_tracking_scope(self): self.steps_run = steps_run self.probe_arrays = probe_arrays self.final_internal_state = final_internal_state self.final_base_params = final_base_params # logging logger.info( "Number of reads: %d", sum(x for x in self.signals.read_types.values()) ) for x in self.signals.read_types.items(): logger.info(" %s: %d", *x) logger.info( "Number of writes: %d", sum(x for x in self.signals.write_types.values()) ) for x in self.signals.write_types.items(): logger.info(" %s: %d", *x) # note: always return steps_run so that the simulation will run for the given # number of steps, even if there are no output probes outputs = list(probe_arrays.values()) + [steps_run] updates = [] if stateful: # update saved state for var, val in zip(self.saved_state.values(), final_internal_state): updates.append(var.assign(val)) # if any of the base params have changed (due to online learning rules) then we # also need to assign those back to the original variable (so that their # values will persist). any parameters targeted by online learning rules # will be minibatched, so we only need to update the minibatched params. for (key, var), val in zip(self.base_params.items(), final_base_params): try: minibatched = self.base_arrays_init["non_trainable"][key][-1] except KeyError: minibatched = self.base_arrays_init["trainable"][key][-1] if minibatched: updates.append(var.assign(val)) logger.info("Number of state updates: %d", len(updates)) if not compat.eager_enabled() and len(updates) > 0: with tf.control_dependencies(updates): outputs = [tf.identity(x) for x in outputs] return outputs
def _fill_bases(self, saved_state, base_params): """ Initialize signals.bases from TensorGraph params. Parameters ---------- saved_state : dict Mapping from base keys to initial values base_params : dict Mapping from base keys to initial values """ for key, val in saved_state.items(): # we add the tf.identity so that when we write we're not updating # the base variable self.signals.bases[key] = tf.identity(val) for key, val in base_params.items(): self.signals.bases[key] = tf.identity(val) for key, (_, shapes, _, minibatched) in self.base_arrays_init["state"].items(): if key not in self.signals.bases: # no saved state for this base, so we just temporarily insert # the shape information so that future scatters will know # what the base shape is shape = list(shapes[0]) shape[minibatched] = sum(x[minibatched] for x in shapes) self.signals.bases[key] = tuple(shape) def _build_loop(self, progress): """ Build simulation loop using symbolic while loop. Parameters ---------- progress : `.utils.ProgressBar` Progress bar for loop construction Returns ------- steps_run : ``tf.Tensor`` The number of simulation steps that were executed. probe_arrays : dict of {`nengo.Probe`: ``tf.Tensor``} Arrays containing the output values for each Probe. final_internal_state: list of ``tf.Tensor`` Tensors representing the value of all internal state at the end of the run. """ def loop_condition(loop_i, n_steps, *_): return loop_i < n_steps def loop_body(loop_i, n_steps, probe_arrays, saved_state, base_params): # fill in signals.bases # note: we need to do this here because we # need to use the tensors from inside the loop, not the source variables) self._fill_bases( dict(zip(self.saved_state, saved_state)), dict(zip(self.base_params, base_params)), ) def update_probes(probe_tensors, loop_i): for i, p in enumerate(probe_tensors): if config.get_setting( self.model, "keep_history", default=True, obj=self.model.probes[i], ): probe_arrays[i] = probe_arrays[i].write(loop_i, p) else: probe_arrays[i] = tf.cond( pred=tf.equal(loop_i + 1, n_steps), true_fn=lambda p=p, i=i: probe_arrays[i].write(0, p), false_fn=lambda i=i: probe_arrays[i], ) loop_i = self._build_inner_loop(loop_i, update_probes, progress) state_arrays = tuple(self.signals.bases[key] for key in self.saved_state) base_arrays = tuple(self.signals.bases[key] for key in self.base_params) return loop_i, n_steps, probe_arrays, state_arrays, base_arrays loop_i = tf.constant(0) probe_arrays = [ tf.TensorArray(self.dtype, clear_after_read=True, size=0, dynamic_size=True) for _ in self.model.probes ] # build simulation loop loop_vars = ( loop_i, self.steps_to_run, probe_arrays, tuple(self.saved_state.values()), tuple(self.base_params.values()), ) loop_vars = tf.while_loop( cond=loop_condition, body=loop_body, loop_vars=loop_vars, parallel_iterations=1, # TODO: check performance impact ) # change to shape (minibatch_size,) (required by keras) instead of a scalar steps_run = tf.tile(tf.expand_dims(loop_vars[0], 0), (self.minibatch_size,)) probe_arrays = OrderedDict() for p, a in zip(self.model.probes, loop_vars[2]): x = a.stack() if self.model.sig[p]["in"].minibatched: # change from tensorarray's (steps, batch, d) to (batch, steps, d) perm = np.arange(x.shape.ndims) perm[[0, 1]] = perm[[1, 0]] x = tf.transpose(x, perm=perm) else: # add minibatch dimension for consistency x = tf.expand_dims(x, 0) probe_arrays[p] = x final_internal_state = loop_vars[3] final_base_params = loop_vars[4] return steps_run, probe_arrays, final_internal_state, final_base_params def _build_no_loop(self, progress): """ Build simulation loop through explicit unrolling. Parameters ---------- progress : `.utils.ProgressBar` Progress bar for loop construction Returns ------- steps_run : ``tf.Tensor`` The number of simulation steps that were executed. probe_arrays : dict of {`nengo.Probe`: ``tf.Tensor``} Arrays containing the output values for each Probe. final_internal_state: list of ``tf.Tensor`` Tensors representing the value of all internal state at the end of the run. """ self._fill_bases(self.saved_state, self.base_params) loop_i = tf.constant(0) # symbolic loop variable loop_iter = 0 # non-symbolic loop variable probe_data = [[] for _ in self.model.probes] def update_probes(probe_tensors, _): nonlocal loop_iter for i, p in enumerate(probe_tensors): if config.get_setting( self.model, "keep_history", default=True, obj=self.model.probes[i] ): probe_data[i].append(p) elif loop_iter == self.unroll - 1: probe_data[i].append(p) loop_iter += 1 loop_i = self._build_inner_loop(loop_i, update_probes, progress) # change to shape (minibatch_size,) (required by keras) instead of a scalar steps_run = tf.tile(tf.expand_dims(loop_i, 0), (self.minibatch_size,)) probe_arrays = OrderedDict() for p, a in zip(self.model.probes, probe_data): if self.model.sig[p]["in"].minibatched: x = tf.stack(a, axis=1) else: x = tf.stack(a, axis=0) # add minibatch dimension for consistency x = tf.expand_dims(x, 0) probe_arrays[p] = x final_internal_state = tuple( self.signals.bases[key] for key in self.saved_state ) final_base_params = tuple(self.signals.bases[key] for key in self.base_params) return steps_run, probe_arrays, final_internal_state, final_base_params def _build_inner_loop(self, loop_i, update_probes, progress): """ Parameters ---------- loop_i : ``tf.Tensor`` Loop iteration variable. update_probes : callable Function that will update some stored probe data in each iteration. progress Progress bar for loop construction. Returns ------- loop_i : ``tf.Tensor`` Updated loop iteration variable. """ constant_probes = {} for p in self.model.probes: probe_sig = self.model.sig[p]["in"] if probe_sig not in self.signals: # if a probe signal isn't in sig_map, that means that it # isn't involved in any simulator ops. so we know its value # never changes, and we'll just return a constant containing # the initial value. init_val = probe_sig.initial_value if probe_sig.minibatched: init_val = np.tile(init_val[None, :], (self.minibatch_size, 1)) constant_probes[p] = tf.constant(init_val, dtype=self.dtype) for unroll_iter in range(self.unroll): logger.debug("BUILDING ITERATION %d", unroll_iter) with tf.name_scope("iteration_%d" % unroll_iter): # fill in invariant input data for n in self.node_inputs: if self.model.sig[n]["out"] in self.signals: # if the out signal doesn't exist then that means that # the node output isn't actually used anywhere, so we can # ignore it self.signals.scatter( self.signals[self.model.sig[n]["out"]], self.node_inputs[n][:, loop_i], ) # build the operators for a single step # note: we tie things to the `loop_i` variable so that we # can be sure the other things we're tying to the # simulation step (side effects and probes) from the # previous timestep are executed before the next step # starts with tf.control_dependencies([loop_i]): # build operators side_effects = self.op_builder.build_step(self.signals, progress) logger.debug("collecting probe tensors") probe_tensors = [] for p in self.model.probes: if p in constant_probes: probe_tensors.append(constant_probes[p]) else: probe_tensors.append( self.signals.gather( self.signals[self.model.sig[p]["in"]] ) ) logger.debug("=" * 30) logger.debug("build_step complete") logger.debug("probe_tensors %s", [str(x) for x in probe_tensors]) logger.debug("side_effects %s", [str(x) for x in side_effects]) # update probe data update_probes(probe_tensors, loop_i) # need to make sure that any operators that could have side # effects run each timestep, so we tie them to the loop # increment. we also need to make sure that all the probe # reads happen before those values get overwritten on the # next timestep with tf.control_dependencies(side_effects + probe_tensors): loop_i += 1 return loop_i
[docs] @trackable.no_automatic_dependency_tracking def build_post(self): """ Executes post-build processes for operators (after the graph has been constructed and whenever Simulator is reset). """ rng = np.random.RandomState(self.seed) # build input functions (we need to do this here, because in the case # of processes these functions need to be be rebuilt on reset) self.input_funcs = {} for n, output in self.invariant_inputs.items(): if isinstance(output, np.ndarray): self.input_funcs[n] = output elif isinstance(output, Process): state = output.make_state((n.size_in,), (n.size_out,), self.dt) self.input_funcs[n] = [ output.make_step( (n.size_in,), (n.size_out,), self.dt, output.get_rng(rng), state, ) for _ in range(self.minibatch_size) ] elif n.size_out > 0: self.input_funcs[n] = [utils.align_func(self.dtype)(output)] else: # a node with no inputs and no outputs, but it can still # have side effects self.input_funcs[n] = [output] # execute build_post on all the op builders self.op_builder.build_post(self.signals)
[docs] def get_tensor(self, sig): """ Returns a Tensor corresponding to the given Signal. Parameters ---------- sig : `~nengo.builder.Signal` A signal in the Nengo model. Returns ------- tensor : ``tf.Tensor`` Tensor containing the value of the given Signal. """ tensor_sig = self.signals[sig] try: base = self.base_params[tensor_sig.key] except KeyError: base = self.saved_state[tensor_sig.key] return tf.gather( base, tensor_sig.tf_indices, axis=1 if tensor_sig.minibatched else 0, )
[docs] def mark_signals(self): """ Mark all the signals in ``self.model`` according to whether they represent trainable parameters of the model (parameters that can be optimized by deep learning methods). Trainable parameters include connection weights, ensemble encoders, and neuron biases. Unless one of those signals is targeted by a Nengo learning rule (otherwise the learning rule update conflicts with the deep learning optimization). Users can manually specify whether signals are trainable or not using the config system (e.g., ``net.config[nengo.Ensemble].trainable = False``). The trainable attribute will be set to one of three values: - ``True``: Signal is trainable - ``False``: Signal could be trainable, but has been set to non-trainable (e.g., because the user manually configured that object not to be trainable). - ``None``: Signal is never trainable (e.g., simulator state) """ def get_trainable(parent_configs, obj): """Looks up the current value of ``obj.trainable``.""" if self.inference_only: return False # default to 1 (so that we can distinguish between an object being # set to trainable vs defaulting to trainable) trainable = 1 # we go from top down (so lower level settings will override) for cfg in parent_configs: try: cfg_trainable = getattr(cfg[obj], "trainable", None) except ConfigError: # object not configured in this network config cfg_trainable = None if cfg_trainable is not None: trainable = cfg_trainable return trainable def mark_network(parent_configs, net): """Recursively marks the signals for objects within each subnetwork.""" parent_configs = parent_configs + [net.config] for subnet in net.networks: mark_network(parent_configs, subnet) # encoders and biases are trainable for ens in net.ensembles: ens_trainable = get_trainable(parent_configs, ens) self.model.sig[ens]["encoders"].trainable = ens_trainable self.model.sig[ens]["encoders"].minibatched = False if not isinstance(ens.neuron_type, Direct): neurons_trainable = get_trainable(parent_configs, ens.neurons) if neurons_trainable and type(neurons_trainable) == int: # neurons_trainable is 1, so default to trainability of parent neurons_trainable = ens_trainable self.model.sig[ens.neurons]["bias"].trainable = neurons_trainable self.model.sig[ens.neurons]["bias"].minibatched = False # connection weights are trainable for conn in net.connections: # note: this doesn't include probe connections, since they # aren't added to the network if compat.conn_has_weights(conn): self.model.sig[conn]["weights"].trainable = get_trainable( parent_configs, conn ) self.model.sig[conn]["weights"].minibatched = False # parameters can't be modified by an online Nengo learning rule # and offline training at the same time. (it is possible in # theory, but it complicates things a lot and is probably not a # common use case). we also make those signals minibatched # (they wouldn't be normally), because we want to be able to # learn independently in each minibatch for conn in net.connections: rule = conn.learning_rule if rule is not None: if isinstance(rule, dict): rule = list(rule.values()) elif not isinstance(rule, list): rule = [rule] for r in rule: if r.modifies in ("weights", "decoders"): obj = conn attr = "weights" elif r.modifies == "encoders": obj = conn.post_obj attr = "encoders" else: raise NotImplementedError if self.model.sig[obj][attr].trainable is True: warnings.warn( "%s has a learning rule and is also set " "to be trainable; this is likely to " "produce strange training behaviour." % obj ) else: self.model.sig[obj][attr].trainable = False self.model.sig[obj][attr].minibatched = True if self.model.toplevel is None: warnings.warn( "No top-level network in model; assuming no trainable parameters", UserWarning, ) else: mark_network([], self.model.toplevel) # the connections to connection probes are not trainable, but # also not minibatched probe_seeds = [self.model.seeds[p] for p in self.model.probes] for obj, seed in self.model.seeds.items(): if isinstance(obj, Connection) and seed in probe_seeds: if compat.conn_has_weights(obj): self.model.sig[obj]["weights"].trainable = None self.model.sig[obj]["weights"].minibatched = False # time/step are not minibatched and not trainable self.model.step.trainable = None self.model.step.minibatched = False self.model.time.trainable = None self.model.time.minibatched = False # fill in defaults for all other signals # signals are not trainable by default, and views take on the # properties of their bases all_sigs = [sig for op in self.model.operators for sig in op.all_signals] # make sure all probe signals are marked (even if they aren't targeted # by any ops), because we still have to read these signals and so we care # about whether they are minibatched/trainable all_sigs.extend(self.model.sig[probe]["in"] for probe in self.model.probes) for sig in all_sigs: if not hasattr(sig.base, "trainable"): sig.base.trainable = None if not hasattr(sig.base, "minibatched"): sig.base.minibatched = not sig.base.trainable if not hasattr(sig, "trainable"): sig.trainable = sig.base.trainable if not hasattr(sig, "minibatched"): sig.minibatched = sig.base.minibatched
[docs] @trackable.no_automatic_dependency_tracking def create_signals(self, sigs): """ Groups signal data together into larger arrays, and represent each individual signal as a slice into that array. Parameters ---------- sigs : list of `~nengo.builder.Signal` Base signals arranged into the order in which they should reside in memory (e.g., output from `.graph_optimizer.order_signals`) """ base_arrays = OrderedDict( [ ("trainable", OrderedDict()), ("non_trainable", OrderedDict()), ("state", OrderedDict()), ] ) curr_keys = {} # special case: if nodes aren't read by any op then they won't be in # sigs. normally this means that node can be safely ignored. # but if there is a probe reading that node value, then we do # want to include that signal in the model, because a user may be feeding # in a live value for that node for which we want to get live probe values node_probe_sigs = ( set(self.model.sig[p]["in"] for p in self.model.probes) .intersection(self.model.sig[node]["out"] for node in self.invariant_inputs) .difference(sigs) ) sigs.extend(node_probe_sigs) sig_idxs = {s: i for i, s in enumerate(sigs)} # find the non-overlapping partitions of the signals breaks = [] diff = defaultdict(int) for ops in self.plan: if isinstance(ops[0], Reset): # don't include Resets, otherwise the big reset block # overrides most of the partitioning partition_sigs = [] else: partition_sigs = range(len(ops[0].all_signals)) for i in partition_sigs: op_sigs = [op.all_signals[i].base for op in ops] idxs = [sig_idxs[s] for s in op_sigs] diff[op_sigs[np.argmin(idxs)]] += 1 diff[op_sigs[np.argmax(idxs)]] -= 1 # find the partition points in signal list open = 0 for i, s in enumerate(sigs): if s in diff: open += diff[s] if open == 0: breaks += [i + 1] logging.debug("partitions") logging.debug( "\n%s", "".join("|" if i in breaks else " " for i in range(len(sigs))) ) # find all the signals that have a set operation associated with them def special_set(s, op): return ( # we don't include Lowpass ops, because for efficiency reasons in the # nengo-dl Lowpass implementation we reuse the output signal (which is # set) as the state signal (so we need to include that signal in the # state) (isinstance(op, SimProcess) and isinstance(op.process, Lowpass)) # nengo marks the time step as a set, but really it's an inc (since # it's incrementing the simulation step) or (isinstance(op, TimeUpdate) and s is op.step) # nengo marks neuron state as a set, but really it's more like an # inc/update (since the neuron calculation may depend on the state) or ( isinstance(op, SimNeurons) and s in compat.neuron_state(op).values() ) ) set_sigs = { s.base for ops in self.plan for op in ops for s in op.sets if not special_set(s, op) } # create all the base signals for i, sig in enumerate(sigs): assert sig not in self.signals assert not sig.is_view if i in breaks: # start a new array for all current bases for k in curr_keys: curr_keys[k] = object() # convert to appropriate dtype if np.issubdtype(sig.dtype, np.floating): dtype = self.dtype elif np.issubdtype(sig.dtype, np.integer): dtype = "int32" elif np.issubdtype(sig.dtype, np.bool_): dtype = "bool" else: raise NotImplementedError("Unsupported signal dtype") if sig.sparse: # for sparse tensors, what we care about is the shape of the # underlying data, not the full matrix shape = (sig.initial_value.size,) else: # resize scalars to length 1 vectors shape = sig.shape if sig.shape != () else (1,) # parameters of signal that affect the base array array_params = (dtype, shape[1:], sig.trainable, sig.minibatched) # key used to map signals to base arrays if array_params not in curr_keys: curr_keys[array_params] = object() key = curr_keys[array_params] if sig in set_sigs: # signals with a set operation associated with them don't need an # initial value (since the value will just be immediately overridden # by the set operation) initial_value = None else: initial_value = sig.initial_value if sig.sparse: if isinstance(initial_value, SparseMatrix): initial_value = initial_value.data else: initial_value = initial_value.tocoo().data if sig.minibatched: shape = (self.minibatch_size,) + shape if sig.trainable is None: sig_type = "state" elif sig.trainable: sig_type = "trainable" else: sig_type = "non_trainable" if key in base_arrays[sig_type]: base_arrays[sig_type][key][0].append(initial_value) base_arrays[sig_type][key][1].append(shape) else: base_arrays[sig_type][key] = [ [initial_value], [shape], dtype, sig.minibatched, ] n = sum(x[sig.minibatched] for x in base_arrays[sig_type][key][1]) slices = [(n - shape[sig.minibatched], n)] tensor_sig = self.signals.get_tensor_signal( slices, key, dtype, shape[sig.minibatched :], sig.minibatched, label=sig.name, signal=sig, ) logger.debug("created base signal") logger.debug(sig) logger.debug(tensor_sig) # add any signal views to the sig_map all_views = set( sig for ops in self.plan for op in ops for sig in op.all_signals if sig.is_view ) # add any probe signalviews. these won't be targeted by any ops, but we # still want them in self.signals because we'll be manually reading them probe_views = set( self.model.sig[probe]["in"] for probe in self.model.probes if self.model.sig[probe]["in"].is_view ) all_views |= probe_views for sig in all_views: if sig.size == sig.base.size: # reshape view self.signals[sig] = self.signals[sig.base].reshape(sig.shape) else: if sig.shape[1:] != sig.base.shape[1:]: # TODO: support this? raise NotImplementedError("Slicing on axes > 0 is not supported") # slice view assert np.all([x == 1 for x in sig.elemstrides[1:]]) start = sig.elemoffset stride = sig.elemstrides[0] stop = start + sig.size * stride if stop < 0: stop = None self.signals[sig] = self.signals[sig.base][slice(start, stop, stride)] self.base_arrays_init = base_arrays